

University

lume \backslash / \bigcirc

University Physics Volume 1 Release Notes 2021

Publish Date:

June 2021

Revision Number:

3 4 5 6 7 8 9 10 JAY 21 18 16

Page Count Difference:

The page count in this revision is 977, down from 996 last revision. This difference is due to errata changes.

Errata:

Below is a table containing submitted errata and the resolutions that OpenStax has provided for this latest text.

Location	Detail	Resolution Notes	Error Type
Unit 1 Mechanics: Chapter 1 Units and Measureme nt: Section 1.1 The Scope and Scale of Physics	Problem #17 states: "A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?". There was in fact no year 0 AD; the Gregorian Calendar began with the year 1 AD.	Delete "AD" from the question stem.	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 1 Units and Measureme nt: Section 1.2 Units and Standards	A small grammatical error: In Figure 1.9, the text below the ruler says "Light travels a distance of 1 meter in 1/299,792,458 seconds". It should be "Light travels a distance of 1 meter in 1/299,792,458 of a second". This correct phrasing is also what is used in the figure caption and the text around the figure (but the figure itself	This figure will be updated.	Туро

	includes a version of the text		
	with incorrect grammar).		
Unit 1	"However this cylinder has	Add a comma after "However".	Туро
Mechanics:	lost" change to "However,		
Chapter 1	this cylinder has lost" (add		
Units and	comma after However).		
Measureme			
nt: Section			
1.2 Units			
and			
Standards			
Unit 1	The sentence "Estimates also	Our reviewers accepted this	Туро
Mechanics:	allow us perform 'sanity	change.	
Chapter 1	checks' on calculations" is		
Units and	missing the word "to" before		
Measureme	the word "perform."		
nt: Section			
1.5			
Estimates			
and Fermi			
Calculations			
Unit 1	Says:	Revise this sentence to "Some	Other
Mechanics:	"Some examples of how	examples include taking the	factual
Chapter 1	discrepancies in data can be	range (that is, the biggest less	inaccuracy
Units and	represented include taking half	the smallest) or finding the	in content
Measureme	the range (that is, the biggest	standard deviation of the	
nt: Section	less the smallest) or finding the	measurements."	
1.6	standard deviation of the		
Significant	measurements."		
Figures			
	Should say:		
	"Some examples of how		
	uncertainties in data can be		
	represented include taking half		
	the range (that is, the biggest		
	less the smallest) or finding the		
	standard deviation of the		
11	measurements."		
	Example 1./: (U.3 lb / 5.1 lb) *	Kevise "5.1" to "5.9".	incorrect
iviecnanics:	100% snould be 5.9% rounded		answer,
Chapter 1			nontennon
I Inite and	to 6%, not 5.1% rounded to 6%		or colution,
Units and	to 6%, not 5.1% rounded to 6%		or solution
Units and Measureme	to 6%, not 5.1% rounded to 6%		or solution

1.6 Significant			
Figures			
Unit 1	https://openstax.org/l/21comp	This link will be updated.	Broken link
Mechanics:	veccalc redirect is broken.		
Chapter 2	Needs new link.		
Vectors:			
Section 2.1			
Scalars and			
Vectors			
Unit 1	The indices for beginning and	Remove italic formatting from	General/ped
Mechanics:	end should be in roman not in	indices.	agogical
Chapter 2	italic; they are not variables in		suggestion
Vectors:	this case.		or question
Section 2.2			
Coordinate			
Systems and			
Component			
s of a Vector			
Unit 1	In University Physics Volume 1,	This issue was addressed in	Incorrect
Mechanics:	the answer key for "Check Your	another report and is correct	answer,
Chapter 2	Understanding", 2.6, appears	IN WEDVIEW.	calculation,
Vectors:	to be incorrect. The answer is		or solution
Section 2.2	stated as 2.6 $\mathbf{D} = (-20m)\mathbf{J}$, but		
Coordinate	the direction is west so it		
Systems and	should be defined with I		
Component	Instead of J.		
s of a vector	Chaulda't the ensures he D (Dovice the i bet to an i bet in	luc como et
	Shouldn't the answer be $D=(-$	Revise the J-hat to an I-hat in	Incorrect
Chapter 2	20 cos(ni) which equals (20m)i		answer,
	$20 \cos(pi)$ which equals (-2011)		calculation,
Vectors.	hat + 0 (20 sin(pi)).		or solution
Section 2.2			
Systems and			
Component			
s of a Voctor			
Linit 1	Check Your Understanding 2.7.	Revise "35.1" to "35.2" in the	Incorrect
Mechanics	Rounding error in magnitude	answer	answer
Chanter ?	calculation of vector		calculation
Vectors	$sart(15^{+})+31^{+}) = 5^{+}) = 5^{+}$		or solution
Section 2.2	31 159 which should be		
Coordinate			

Systems and	rounded to 31.2 whereas the		
Component	answer key says 31.1.		
s of a Vector			
Unit 1 Mechanics: Chapter 2 Vectors: Section 2.2 Coordinate Systems and Component s of a Vector	Problem #37: The solution seems to have been incorrectly multiplied by 10. Components cannot be larger than the magnitude 5.0 for the vector.	Revise the answer in part (b) from "30.09" to "3.01" and from "39.93" to "3.99".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 2 Vectors: Section 2.2 Coordinate Systems and Component s of a Vector	The directions of travel in Problem #38 are given as cardinal directions (west and north) but the problem says to assume that the +x-axis is horizontal to the right. The axis direction should be specified as a cardinal direction.	Revise the last sentence in the question stem to "Assume the +x-axis is to the east."	Туро
Unit 1 Mechanics: Chapter 2 Vectors: Section 2.3 Algebra of Vectors	One of the dogs used in Example 2.10 is named "Dug" this is spelled as "Dong" at the end of the example.	Our reviewers accepted this change.	Туро
Unit 1 Mechanics: Chapter 2 Vectors: Section 2.3 Algebra of Vectors	The answer listed for Problem #47 in the textbook and the instructor's manual is incorrect. The answer for b. should be -2(ihat) +2(jhat), which gives an angle of 135 degrees, or 45 degrees north of west.	Revise "45°" to "135°".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 2 Vectors: Section 2.3 Algebra of Vectors	Problem #47 (b): The difference vector should be -2i + 2j	Revise to "–2i + 2j".	Incorrect answer, calculation, or solution

Unit 1	Problem #47 (a): The solution	Revise from "236.3" to "236".	Incorrect
Mechanics:	for the angle theta should be		answer,
Chapter 2	236 degrees.		calculation,
Vectors:			or solution
Section 2.3			
Algebra of			
Vectors			
Unit 1	Resulting from Error 7486	Revise "⊥" to "II" in the	Туро
Mechanics:	(https://openstax.org/errata/7	caption. The PDF will be	
Chapter 2	486), in the online version,	updated at a later date.	
Vectors:	Figure 2.27 had		
Section 2.4	"perpendicular" subscripts on		
Products of	A & B changed to "parallel,"		
Vectors	but the caption was *not*		
	changed so caption		
	mistakenly still has "perp"		
	subscripts, but these need to		
	be "parallel" subscripts. Also,		
	unlike the online version, the		
	downloadable PDF **still**		
	has the wrong ("perp")		
	subscripts in *both* figure &		
	caption must be changed to		
	"parallel" (" ") subscripts.		
Unit 1	In the equation after "Now,	Revise "18.2" to "24.9".	Туро
Mechanics:	substituting into Equation 2.34		
Chapter 2	gives angle $ heta$:", the value for F		
Vectors:	should be 24.9ζ, not 18.2ζ. It		
Section 2.4	was calculated three steps		
Products of	earlier.		
Vectors			
Unit 1	Part c.) of problem 63 in the	Add a negative sign to the	Incorrect
Mechanics:	Chapter 2 Review asks the	answers for c) and d).	answer,
Chapter 2	reader to find the component		calculation,
Vectors:	of vector i^hat along vector		or solution
Answer Key	F^arrow, and part d.) asks to		
	find the component of vector		
	F^arrow along vector i^hat.		
	The answers to parts c.) and d.)		
	are cos(210°) ≈ -0.866 and		
	20.0cos(210°) ≈ -17.3,		
	respectively. The answer key,		
	however, gives 0.866 for c.)		
	and 17.32 for d.). The answer		

	key's answers are correct only if one assumes F^arrow to have a direction angle of 30° or -30° measured counterclockwise from the +x- axis instead of 210° or -150° measured counterclockwise from the +x-axis as shown in the figure to which the problem refers.		
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.1 Position, Displaceme nt, and Average Velocity	The problem asks for acceleration in meters per second. It should be meters per second squared.	Revise "meters per second" to "meters per second squared".	Туро
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.1 Position, Displaceme nt, and Average Velocity	In the calculation for the total displacement of two separate movements, the book says: "The total displacement is 2 – 4 = -2 m to the left, or in the negative direction." I suggest to change the answer to either -2 m along the x-axis or stating that it's 2 m to the left.	Revise the sentence "The total displacement is" to "The total displacement is 2 – 4 = –2 m along the x-axis."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.1	Problem #29 uses data from the Chelyabinsk fireball (meteor). Using the data provided, I got a speed of half the speed of sound for the "blast wave" which isn't even a shock wave since its half the speed of sound (which is	After the sentence beginning "The blast wave", add "The blast wave traveled at 10° above the horizon." Revise the answer to part (b) to "163% the speed of sound at sea level or about Mach 2."	Incorrect answer, calculation, or solution

Position,	correct according to the		
Displaceme	OpenStax solution manual).		
nt, and	The data is correct (23.5 km		
Average	height and 2 min 30 seconds		
Velocity	until it hit the town), butthat		
	assumes the blast wave went		
	straight down. It did not. The		
	meteor traveled on a shallow		
	angle (luckily since that let the		
	atmosphere absorb most of		
	the energy). Anyway, I looked		
	at the smoke trail (picture		
	attached from Wikipedia) and		
	it looks like about a 10 degree		
	angle. If you use the slant		
	range instead of the height,		
	you get something like 800 m/s		
	or about Mach 2 which		
	makes a LOT more sense for a		
	"shock wave"		
Unit 1	Equation 3.7 is totally wrong	Revise the sentence right	General/ped
Mechanics:	expression to highlight	before equation 3.7 to "If each	agogical
Chapter 3	because it has no general	term in the x(t) equation has	suggestion
Motion	applicability. The correctness	the form of At^n where A is a	or question
Along a	of the expression depends on	constant and n is an integer,	
Straight	the specific form of x(t), given	this can be differentiated using	
Line:	in the paragraph before, *and*	the power rule to be:" Then	
Section 3.2	its applicability is so narrow	after the equation box, add the	
Instantaneo	that even in Examples 3.3 and	sentence "Note that if there	
us Velocity	3.4 (for which I think Equation	are additional terms added	
and Speed	3.7 was given a number), it is	together, this power rule of	
	not directly applicable.	differentiation can be done	
	Equation 3.7 technically only	multiple times and the solution	
	applies when x(t) takes the	is the sum of those terms." The	
	form of a single-term	equation will also be revised.	
	polynomial, a situation so		
	narrow that it almost never		
	happens except in constant-		
	velocity motion (both		
	Examples 3.3 and 3.4 involve		
	polynomials with multiple		
	terms).		
	_		
	One way to fix it would be		

	rather than to try to give an expression for dx/dt (prone to so much misinterpretation), actually and directly state the power rule for differentiation, and in Examples 3.3 and 3.4, refer to that power rule (if necessary, reminding students that terms connected by addition can be broken up and differentiation rules applied separately), rather than trying to use a non-existent explicit formula for dx/dt.		
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.2 Instantaneo us Velocity and Speed	Many equations are not aligned properly with their bounding boxes in the web view (see attached screenshot). The issue seems to occur particularly with short equations rather than large equation blocks. I expect this is a HTML/CSS error? Highlighted error is for equation 3.5 but it occurs fairly regularly. I found the issue using the Chrome browser on my laptop and also on my phone.	Thank you for reporting this! We've corrected this error, and the equations should now be aligned correctly in the most recent webview: https://cnx.org/contents/1Q9u Mg_a@10.18:Ej8o3nbb@7/32 -Instantaneous-Velocity-and-	Other
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.4 Motion with Constant Acceleration	The question uses the term 'decelerates' but in Chapter 3.3 on page 117 is says: "The term deceleration, so we don't use it". I agree and the term should be removed/changed in Example 3.7.	Revise "decelerates" to "accelerates opposite the motion". This will also be updated throughout the book.	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 3	1 wo problems: 1) Somehow, the variables for position, velocity, and	Units will be added in the solution. Our reviewers	General/ped agogical

Motion	acceleration need to be	decided not to add subscript	suggestion
Along a	distinguished between the two	labels on each equation.	or question
Straight	animals (cheetah and gazelle).		
Line:	There should be subscripts to		
Section 3.4	identify each animal.		
Motion with	2) When numbers are plugged		
Constant	in at the end of step a and also		
Acceleration	in step b, the numbers do not		
	include units. Units should be		
	included, like they are earlier		
	in this section in Example 3.12.		
Unit 1	Problem #57 gives an initial	Revise (b) to "Assuming	General/ped
Mechanics:	and final velocity, and the time	constant acceleration, how far	agogical
Chapter 3	to achieve the final velocity.	does it travel in that time?"	suggestion
Motion	Although this allows the		or question
Along a	student to solve for the		
Straight	average acceleration (part a),		
Line:	there isn't enough information		
Section 3.4	given to solve for the distance		
Motion with	traveled (part b). Suggest		
Constant	adding "Assume constant		
Acceleration	acceleration." to part (b).		
Unit 1	I'm glad Problem #44 was	Revise the question to "A	Туро
Mechanics:	corrected, but it's now missing	particle moves in a straight line	
Chapter 3	some spaces and the	with an initial velocity of 0 m/s	
Motion	equations for x and t are in the	and a constant acceleration of	
Along a	wrong order. The second	30 m/s2. If x = 0 at t = 0, what	
Straight	sentence should start "If x=0 at	is the particle's position at t = 5	
Line:	t=0,".	s?"	
Section 3.4			
Motion with			
Constant			
Acceleration			
Unit 1	Part D of Example 3.17 is	Revise "(6.3 s)" to "(6.3 s)^3".	Туро
Mechanics:	missing an exponent (should		
Chapter 3	be a 3).		
Motion			
Along a			
Straight			
Line:			
Section 3.6			
Finding			
Velocity and			
Displaceme			

nt from			
Acceleration			
Acceleration Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.6 Finding Velocity and Displaceme nt from Acceleration	In Check Your Understanding 3.8, the unit for the acceleration function needs to be specified more carefully. The expression "5-10t m/s^2" is not dimensionally consistent, as you cannot add a unitless quantity "5" to the quantity with unit of time "10t". The simplest way to fix it would be to add a note that "t" is the amount of time passed in seconds, although an overall better approach (one more consistent with physics textbook, not math textbook) would be to build an expression that is unit- consistent in a self-contained way, something like "(5 s - 10 t) m/s^3" (in a similar way to the example immediately above Check Your Understanding 3.8 at least at the beginning, although the solution gets sloppy with units).	The expression will be revised.	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 3 Motion Along a Straight Line: Section 3.6 Finding Velocity and Displaceme nt from Acceleration	Check Your Understanding 3.8: In this problem students need to make the unstated assumption that the bike and person were at the same place at t=0, and thus covered the same displacement. This should be more clear.	Revise to "A bicycle has a constant velocity of 10 m/s. A person starts from rest and begins to run to catch up to the bicycle in 30 s when the bicycle is at the same position as the person. What is the acceleration of the person?"	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 3	In problem 97, I suggest to replace "her average speed at this position is 8 m/s" with "her	Delete "average" from the question stem.	General/ped agogical

Motion	speed at this position is 8 m/s".		suggestion
Along a	The term "average speed"		or question
Straight	suggests it was calculated		
Line:	based on eq. (3.3) over some		
Additional	unknown elapsed time; e.g. my		
Problems	students tried to assume the		
	elapsed time was related to		
	the distance to the finish line,		
	or to the point where the		
	runner stops.		
Unit 1	I do not like the line break with	This will be addressed in the	General/ped
Mechanics:	a unit as, for example, in	next PDF release.	agogical
Chapter 4	problems 54 and 59 where the		suggestion
, Motion in	velocity unit has "m/" in one		or auestion
Two and	line and "s" in the next line.		'
Three	This could be a general		
Dimensions	problem but I didn't find it in		
	other Chapters, while quickly		
	searching.		
Unit 1	Check your understanding	This issue was addressed in	Incorrect
Mechanics:	problems in chapter 4 of the	another report and has been	answer,
Chapter 4	textbook. The answer in the	corrected.	calculation,
Motion in	back of the book is wrong. The		or solution
Two and	problem is CYU 4.1. The		
Three	' question asks for the average		
Dimensions:	velocity between 2s and 4s and		
Section 4.1	the book sets up the equation		
Displaceme	correctly as r(t2)-r(t1)/t2-t1,		
nt and	however the numerical values		
Velocity	for the answer given would be		
Vectors	for if you had computed v(t2)-		
	v(t1)/t2-t1.		
	the correct answer is		
	v avg=(3.0(4)^3 i + 4.0 j)-		
	(3.0(2)^3i+4.0j)/(4s-2s)=84i		
	m/s.		
	However the book shows		
	(144.0i-36i)/(2.0s). 144 and 36		
	are what you would get if you		
	plugged t2 and t1 in for the		
	VELOCITY function (v=9t^2 i).		
Unit 1	Problem #19 reads "The 18th	Revise "from the tee" to "from	General/ped
Mechanics:	hole at Pebble Beach Golf	where it started".	agogical
Chapter 4	Course is a dogleg to the left of		

Motion in	length 496.0 m. The fairway off		suggestion
Two and	the tee is taken to be the x		or question
Three	direction. A golfer hits his tee		
Dimensions:	shot a distance of 300.0 m,		
Section 4.1	corresponding to a		
Displaceme	displacement What is the		
nt and	final displacement of the golf		
Velocity	ball from the tee?"		
Vectors			
	This assumes a level of		
	familiarity with golf that some		
	students do not have. The		
	required knowledge is that the		
	tee shot originates from the		
	tee. Why not pose the		
	question "What is the final		
	displacement of the golf ball		
	from where it started?"		
Unit 1	The solution to part (b) of	Revise "144.0" to "188", "36.0"	Incorrect
Mechanics:	"Check your understanding	to "20", and "54.0" to "84".	answer,
Chapter 4	4.1"		calculation,
Motion in	is incorrect. The solution		or solution
Two and	correctly sets up the		
Three	calculation of average velocity		
Dimensions:	as displacement (change in		
Section 4.1	position) divided by time		
Displaceme	interval, but in evaluating the		
nt and	two positions, the solution		
Velocity	uses the velocities at those		
Vectors	times, instead. The correct		
	answer should be		
	(84 m/s) ihat. I have posted a		
	PDF with the correct solution.		
Unit 1	Example 4.1: Although the	Revise "(cos 45°)" to	Туро
Mechanics:	overall calculation would be	"(cos(-45°))".	
Chapter 4	correct, the x-component for		
Motion in	vector r(t2) should be		
Two and	expressed in terms of angle -45		
Three	deg and not +45 deg, i.e. cos(-		
Dimensions:	45), to match the expression		
Section 4.1	for the y-component and		
Displaceme	Figure 4.4.		
nt and			

Velocity			
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.2 Acceleration Vector	The colored dots should be explained in the caption. The motion is explained but which color defines which aspect would be helpful.	In the caption, add "as shown with blue dots" to the end of the first sentence. Add "with red stars" to the end of the second sentence. The figure will also be updated to revise the red dots to stars.	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.2 Acceleration Vector	Problem #29: The solution for the speed at 3 seconds should be 190 m/s.	Revise from "199.0" to "190.0".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	The final angle had been corrected from last year, but now the minus sign is missing.	Add "below the horizon" after 36.9°.	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	The solution at the back of the textbook calculates the angle at which the time of flight of the ball is the same as it takes a receiver to run between two points, for a specified launch velocity (20.0 m/s), where it is to be caught. However, with the specified launch velocity, the ball lands at x = 20.5m at this time, not at x=20.0m (where the receiver is specified	Revise the question stem to: " 1. Aaron Rodgers throws a football at 20.0 m/s to his wide receiver, who is running straight down the field at 9.4 m/s. If Aaron throws the football when the wide receiver is 10.0 m in front of him, (a) at what angle does Aaron have to launch the ball at so the ball will be at the same height as the receiver	Incorrect answer, calculation, or solution

	to be). Hence, the ball is not caught by the runner, the ball was overthrown.	when the receiver makes it to 20.0 m in front of Aaron? (b) Will the receiver be able to catch the ball?"	
	In this problem, the ball's velocity cannot be given as a free parameter if the problem also specifies where and when it is to be caught. The problem should therefore be revised so that the student either calculates both the launch angle and velocity necessary to hit the receiver (this makes the problem somewhat more complicated problem than other problems in this section) OR, it should be modified so that the student is asked whether or not the receiver catches the ball (given the launch velocity), the answer to which is "NO".	Update the answer to include: "(b) $x = (v_0^2sin(2\theta))/g = 21$ m Therefore, the ball will be overthrown, and the receiver will not be able to catch it."	
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	In Example 4.8 in "Significance", it should say "lands 10.0 m above its starting altitude" not "lands 10.0 m below its starting altitude". The example describes a ball landing 10 m above where it starts.	Revise to "10.0 m above".	Туро
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	In the "Problem-Solving Strategy: Projectile Motion" box, the symbol theta is used in two different senses. In Step #1, theta is used to indicate the angle of velocity vector, while in Step #4, theta is used to indicate the angle of displacement vector. These two angles are not the same, and the potential for confusion	Figure 4.11 and the related text will be updated to use phi instead of theta.	General/ped agogical suggestion or question

	is quite substantial, especially when the same symbol is used for both. The confusion might be solved in a few different ways. Figure		
	(although, that's the angle of initial velocity, not velocity as a function of time), which could be used to refer to the angle in Step #1. I think it would be better to use a different letter altogether. theta was already		
	angle of displacement vector; perhaps phi should be used for angle of velocity vector (this would require changes in Figure 4.12 as well, and possibly changes throughout the section, if you want to ensure consistency through		
	the sectionalthough I think consistency through one boxed text and associated graphic is enough).		
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	Please refer to Example 4.8. It is: initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air. There is a mistake in this line. It must be: initial vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude spends 3.79 s in the air.	Revise "lands 10.0 m below its starting altitude" to "lands 10.0 m above its starting altitude".	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions:	The answer listed for Problem #39, part d) in the textbook at instructor solutions manual is incorrect. The correct answer for part d) is 2550 i-hat + 378 j- hat m.	The solution to part d will be revised.	Incorrect answer, calculation, or solution

Section 4.3			
Projectile			
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	Problem #8: the vectors v and a (in parts b and c) should be in boldface with arrows above like other vector symbols. If you make that change, you might be able to write "v" rather than "the vector v" and "a" rather than "the vector a".	Our reviewers accepted this change.	Туро
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	Problem #59: As a student pointed out, the position of the quarterback is not given, and the football fans among our students will know that the quarterback is unlikely to throw the ball from the same "yard line" that the wide receiver started from. One solution would be "Aaron Rodgers throws the football at 20 m/s to his wide receiver, who is running straight down the field at 9.4 m/s. If Aaron throws the football when the receiver is 10.0 m in front of him, what angle does Aaron have to launch the ball at so the receiver catches it 20.0 m in front of Aaron?"	Revise the question to "Aaron Rogers throws a football at 20.0 m/s to his wide receiver, who is running straight down the field at 9.4 m/s. If Aaron throws the football when the wide receiver is 10.0 m in front of him, what angle does Aaron have to launch the ball at so the receiver catches it 20.0 m in front of Aaron?"	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	Figure 4.12: in a) Projectile Motion the Vx and Vy vectors don't sum to the V vector. They're close but visually you can see they're too long.	This figure will be updated.	Other

Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.3 Projectile Motion	The answer to Problem #39, part (d) seems wrong. I got the same horizontal displacement, 2545.5m, but my students (and I) got a value of 367.5m for the vertical displacement at 15s.	Revise the answer to part (d): "x = 169.7 m/s (15.0 s) = 2545.5 m", "y = (98.0 m/s)(15.0 s) - 4.9(15.0s) 2 = 367.5 m", and revise "465" to "367".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.4 Uniform Circular Motion	The tangential acceleration vector is mislabeled "a_r" instead of "a_T" (two locations)	This issue was addressed in another report and is correct in webview.	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 4 Motion in Two and Three Dimensions: Section 4.4 Uniform Circular Motion	In Chapter 6.3 the text refers to centripetal acceleration as a_c, with a lowercase c as the subscript. In Chapter 4.4 on Uniform Circular Motion, the centripetal acceleration is a_C, with an uppercase C as the subscript. These two references to centripetal acceleration should be consistent. I know that the difference between uppercase C and lowercase c is not much, but it is enough to be confusing to the students, particularly when they are preparing for a test covering both chapters. Please fix this.	The capitalized Cs will be updated to lowercase c.	Туро
Unit 1 Mechanics: Chapter 4 Motion in Two and	Throughout the section you call the components of the acceleration a_C and a_T, but in Figure 4.22 and Example 4.12, you refer to the	Figures 4.22 and 4.23 will be updated to use T instead of r.	Туро

Three	tangential acceleration		
Dimensions:	component as a_r. This is very		
Section 4.4	confusing because it is		
Uniform	inconsistent and it does not		
Circular	even refer to the radial		
Motion	component (which is a_C in		
	your notation). Please fix this.		
Unit 1	The magnitude for the x-	This figure will be updated.	Other
Mechanics:	direction vector should be		factual
Chapter 4	4787 km not 4797 km. 4787		inaccuracy
Motion in	km is used in example 4.1.		in content
Two and			
Three			
Dimensions:			
Section 4.4			
Uniform			
Circular			
Motion			
Unit 1	For Problem #70, the sentence	This will be addressed in the	Туро
Mechanics:	ending "." of the first sentence	next PDF release.	
Chapter 4	should not be in the new line.		
Motion in			
Two and			
Three			
Dimensions:			
Section 4.5			
Relative			
Motion in			
One and			
Two			
Dimensions			
Unit 1	Problem #87 needs to say that	Revise "t = 0 s." to "t = 0 s	Other
Mechanics:	at t=0, the particle is on the x	where it is on the x-axis and	factual
Chapter 4	axis and that it's moving	moving counterclockwise in	inaccuracy
Motion in	counterclockwise in the xy	the xy plane."	in content
Two and	plane (or around the z axis).		
Three			
Dimensions:			
Additional			
Problems			
Unit 1	Customer Support submitting	Revise "1.00 × 10^3" to "1.00 ×	Туро
Mechanics:	errata, Case # 39523	10^2".	
Chapter 5			
Newton's	Suggested Correction:		

Laws of	I came across a typo in		
Motion:	Problem #36. In Chapter 5		
Section 5.3	(Newton's Laws of Motion) on		
Newton's	problem 36, it says that an SUV		
Second Law	is traveling at 1.00x10^3 km/h,		
	which works out to be about		
	621 miles per hour. I checked		
	all of the copies of this		
	textbook, the hardcover print,		
	the online pdf, and the iphone		
	app and they all say the same		
	number. The only one that is		
	different is on the textbook		
	answers page that is given to		
	the instructors, the problem is		
	repeated the same way but in		
	the calculation of the answer,		
	it uses 100 km/h.		
Unit 1	I suggest to move the second	Move this simulation to	General/ped
Mechanics:	interactive simulation "Use this	Chapter 13.4.	agogical
Chapter 5	interactive simulation to move		suggestion
Newton's	the Sun, Earth, Moon, and		or question
Laws of	space station to see the effects		
Motion:	on their gravitational forces		
Section 5.4	and orbital paths." to Chapter		
Mass and	13.		
Weight			
Unit 1	Problem #47 states "A body	Revise the last sentence in the	Incorrect
Mechanics:	with a mass of 10.0 kg is	question to "What is the net	answer,
Chapter 5	assumed to be in the Earth's	force on the body if there are	calculation,
Newton's	gravitational field with g = 9.80	no other external forces acting	or solution
Laws of	m/s^2. What is its	on the object?" and revise the	
Motion:	acceleration?"	answer to "98 N".	
Section 5.4			
Mass and	If the body is in freefall, the		
Weight	acceleration should be		
	9.8m/s^2. The answer given,		
	0.6i -8.4j, makes no sense		
	unless there is an additional		
	constraint, such as being on a		
	ramp.		
Unit 1	Problem #57 has already been	Revise the question to:	Incorrect
Mechanics:	revised once. The new version,	"A team of nine members each	answer,
Chapter 5	visible online Fall 2020, reads:	engage in a tug-of-war, pulling	

Newton's		in opposite directions on a	calculation,
Laws of	"A team of nine members on a	horizontal rope. Each of the	or solution
Motion:	tall building tug on a string	first team's members has an	
Section 5.6	attached to a large boulder on	average mass of 68 kg and	
Common	an icy surface. The boulder has	exerts an average force of	
Forces	a mass of 200 kg and is tugged	1350 N horizontally on the	
	with a force of 2350 N. (a)	ground as they pull on the	
	What is magnitude of the	rope. Each of the second	
	acceleration? (b) What force	team's members has an	
	would be required to produce	average mass of 73 kg and	
	a constant velocity?"	exerts an average force of	
		1365 N horizontally on the	
	The suggested solution to this	ground as they pull on the	
	problem, indicated in Errata	rope in the opposite direction.	
	revision 9847, is: "Revise the	(a) What is magnitude of the	
	answer to: a. 1.95 m/s^2 b.	acceleration of the two teams,	
	1960 N"	and which team wins? (b)	
		What is the tension in the	
	It is unclear why nine members	section of rope between the	
	(of what group?) are involved	teams?"	
	in this problem, and what the	The answer will also be	
	height of the building is, which	updated.	
	is presumably some height		
	above an icy surface. Is the		
	force applied along the angle		
	of the rope (in which case we		
	need to know the height or		
	angle of the rope to identify		
	the horizontal component of		
	Force applied)? The "icy		
	surface" implies a surface of		
	negligible friction, in which		
	case there is no way a force		
	applied can produce a		
	constant velocity.		
	The second second second		
	ine previous tug-ot-war		
	proplem had some issues,		
	easily lixed by specifying a		
	Consider restoring that		
	consider restoring that		
	problem as follows:		
	"Two teams of nine members		

and which team wins? (b) What is the tension in the section of rope between the teams? Answers: (a) 0.106 m/s^2 in the direction of team 2. Team 2 wins the tug-of-war. (b) Tension = 1.22 x 10^4 N. During the calculation, assuming no friction, the first	Revise " – mg" to "= mg".	Туро
and which team wins? (b) What is the tension in the section of rope between the teams? Answers: (a) 0.106 m/s^2 in the direction of team 2. Team 2 wins the tug-of-war. (b) Tension = 1.22 x 10^4 N. During the calculation,	Revise " – mg" to "= mg".	Туро
and which team wins? (b) What is the tension in the section of rope between the teams? Answers: (a) 0.106 m/s^2 in the direction of team 2. Team 2 wins the tug-of-war. (b)		
and which team wins? (b) What is the tension in the section of rope between the teams?		
and which team wins? (b)		
(a) What is magnitude of the		
1365 N horizontally on the ground as they pull on the rope in the opposite direction.		
average mass of 73 kg and exerts an average force of		
ground as they pull on the rope. Each of the second		
exerts an average force of 1350 N horizontally on the		
the first team's members has an average mass of 68 kg and		
on a horizontal rope. Each of		
each engage in a tug-of-war,		
	pulling in opposite directions on a horizontal rope. Each of the first team's members has an average mass of 68 kg and exerts an average force of 1350 N horizontally on the ground as they pull on the rope. Each of the second team's members has an average mass of 73 kg and exerts an average force of 1365 N horizontally on the ground as they pull on the rope in the opposite direction.	pulling in opposite directions on a horizontal rope. Each of the first team's members has an average mass of 68 kg and exerts an average force of 1350 N horizontally on the ground as they pull on the rope. Each of the second team's members has an average mass of 73 kg and exerts an average force of 1365 N horizontally on the ground as they pull on the rope in the opposite direction.

	version in Figure 5.23, but the		
	text version is incorrect.		
Unit 1	I believe Problem #57 is	Revise this question to:	Other
Mechanics:	insoluble. The forces the tug-	A team of nine members on a	factual
Chapter 5	of-war teams are exerting are	tall building tug on a string	inaccuracy
Newton's	given, but what are they	attached to a large boulder on	in content
Laws of	exerting the forces on? Not	an icy surface. The boulder has	
Motion:	each other, because the forces	a mass of 200 kg and is tugged	
Section 5.6	are unequal, so that would	with a force of 2350 N. (a)	
Common	violate Newton's Third Law.	What is magnitude of the	
Forces	Furthermore, neither team's	acceleration? (b) What force	
	acceleration can be found	would be required to produce	
	from the force on it because	a constant velocity?	
	we don't know their friction	Revise the answer to:	
	with the ground. If the teams	a. 1.95 m/s^2	
	are exerting those forces on	b. 1960 N	
	the rope, the acceleration		
	can't be found because the		
	mass of the rope isn't given. In		
	practice, friction with the		
	ground is crucial in tug-of-war.		
	If this problem can be saved,		
	maybe it's by giving the		
	frictional force on one team or		
Linit 1	The Free-Body diagram for	This figure was undated in	Incorrect
Mechanics:	mass m1 is not correct. The	errata 6/5/ The text in the	answer
Chanter 5	Normal Force N should point	Significance section will be	calculation
Newton's	up and the gravitational force	undated to " assuming the	or solution
Laws of	m1g should point down nAlso	string remains taut the	or solution
Motion:	the solution incorrectly states	magnitudes of acceleration are	
Section 5.7	that the acceleration vectors	equal. Thus, we have have la	
Drawing	a1 and a2 are equal, however	$ \rightarrow 1 = a \rightarrow 2 . f''$	
Free-Body	they point in different	· · · · · · · · · · · · · · · · · · ·	
Diagrams	directions. The magnitudes of		
5	the accelerations are equal,		
	but not the vectors.		
Unit 1	In Example 5.16, the first figure	This figure will be updated.	Туро
Mechanics:	under the "Solution" heading		
Chapter 5	has the labels on the vertical		
Newton's	vectors reversed. The labels N		
Laws of	and m_1 g should be swapped,		
Motion:	so that the normal force points		
Section 5.7			

Drawing	upward and the weight		
Eroo Body	downward		
Diagrams			
	The answer to Droblem #92 is	This is corrected in webview	Incorrect
Unit I	inconsistant The work shows	and the solution guide	incorrect
	the ensurement of Durch ADuAD, but	and the solution guide.	answer,
Chapter 5	the answer as 2mk ² X ³ , but		calculation,
Newton's	then reports it as 2mk^2x^2.		or solution
Laws of			
Motion:	"F=2mk2x2; First, take the		
Additional	derivative of the velocity		
Problems	function to obtain		
	a=2kxv=2kx(kx2)=2k2x3. Then		
	apply Newton's second law		
	F=ma=2mk2x2."		
Unit 1	I believe there is an error in	This solution will be updated.	Incorrect
Mechanics:	the answer to problem 79, an		answer,
Chapter 5	"additional problem" of		calculation,
Newton's	chapter 5. I believe the error		or solution
Laws of	arises from flipping, or		
Motion:	exchanging out the x and y		
Additional	components of the F3 vector		
Problems	when finding your net force,		
	which leads to an erroneous		
	acceleration answer.		
	service ticket #23312		
Unit 1	Example 6.7: The second	Add "∆v=" after "and".	Туро
Mechanics:	sentence seems to be missing		
Chapter 6	the symbol(s) "∆v=" right after		
Applications	"and" to complete the		
of Newton's	equation referenced. The		
Laws:	picture attached shows the		
Section 6.1	correction annotated in red		
Solving	(for my reference).		
Problems	· · · · · · · · · · · · · · · · · · ·		
with			
Newton's			
Laws			
Unit 1	Submitted by Customer	This problem and the previous	Incorrect
Mechanics:	Support on behalf of user Case	problem intend for students to	answer
Chapter 6	52312	look up the coefficient of	calculation
Applications		friction of ice from Table 6.1 in	or solution
of Newton's	"I'm going through the	the textbook Add the	or solution
OF NEWLOTIS	i in going through the	THE LEXTDOOK. AUU THE	

Laws:	homework questions in	following sentence to	
Section 6.2	chapter 6, and I feel that the	questions 62a and 63a: The	
Friction	coefficient of friction is not	coefficient of friction of ice can	
	stated in problem #63 part (a).	be found in Table 6.1.	
	If you use the solution for F		
	(which is what you're trying to		
	solve for), you end up with a		
	value of mu = 0.100."		
Unit 1	In the description of Figure	Delete the sentence "However,	Other
Mechanics:	6.14, in the PDF textbook, on	$f \rightarrow$ is equal to"	factual
Chapter 6	page 287, there is a statement		inaccuracy
Applications	that "However, f → is equal to		in content
of Newton's	\vec{w} x in magnitude, so there is a		
Laws:	constant velocity down the		
Section 6.2	slope (along the x-axis)." This		
Friction	suggests that there is constant		
	velocity because "f is equal to		
	$\vec{w} \times \vec{x}$, and by calculating $\vec{w} \times \vec{x}$		
	via the values (w x vector = mg		
	sin theta = 9.80 m/s^2 (62 kg)		
	sin 25, which equals about 257		
	newtons. This is not equal to		
	the frictional force 45.0		
	newtons, and so this detail is		
	wrong. The rest of the example		
	is correct. These errors are also		
	present in the print version of		
	the textbook, although that		
	version is slightly older and		
	does not completely reflect		
	the PDF version.		
Unit 1	Notation inconsistency.	Add an i-hat to the end of all	Other
Mechanics:	P with a vector sign above	the forces. Also remove the	factual
Chapter 6	denotes the vector of the	vector on the P term in the	inaccuracy
Applications	pushing force.	equation right before the	in content
of Newton's	Stating that fs=P-vector is	Significance section.	
Laws:	incorrect; fs=P (the magnitude,		
Section 6.2	without the vector arrow). P-		
Friction	vector cannot be used as a		
	scalar in an equation; it should		
	be replaced by the magnitude.		
Unit 1	Example 6.12: I believe the	This figure will be updated.	Туро
Mechanics:	notation/label for the down		
Chapter 6	force acting on the		

Applications of Newton's Laws: Section 6.2 Friction Unit 1 Mechanics: Chapter 6 Applications of Newton's Laws: Section 6.2	turquoise/vertical/top block should be "19.6 N" or "19 Newtons", and not the vector N. The reference to Example 6.10 should be Example 6.11. Picture attached shows annotation in red for my reference.	Our reviewers accepted this change.	Туро
Friction Unit 1 Mechanics: Chapter 6 Applications of Newton's Laws: Section 6.2 Friction	In Example 6.12, the force diagram for the 2.0 kg mass has a weight vector labelled 19.6 vector-N, but this should be 19.6 Newtons (no vector hat on the N, it is a unit). A unit vector j could be used to keep the vector notation, -19.6 N hat-j, though in examples 6.13 and 6.14 the vector notation is simply omitted.	This figure will be updated.	Туро
Unit 1 Mechanics: Chapter 6 Applications of Newton's Laws: Section 6.3 Centripetal Force	Figure 6.28, (c) should show counterclockwise rotation in the dark blue (currently is clockwise)	This figure will be updated.	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 6 Applications of Newton's Laws: Section 6.3 Centripetal Force	Problem #72: The online version and ISM has only one question. The printed book has a), b), and c). b) and c) deal with energy which should not be asked at that point. Therefore, removing part b) and c) from the question in the book would be correct.	Our reviewers accepted this change.	Other factual inaccuracy in content

Unit 1	/l/21carousel is broken	This link will be updated.	Broken link
Mechanics:			
Chapter 6			
Applications			
of Newton's			
Laws:			
Section 6.3			
Centripetal			
Force			
Unit 1	Problems 90-98 have no	Move questions 90-98 to the	General/ped
Mechanics:	connection with drag forces.	Additional Problems section.	agogical
Chapter 6	They should be moved to the		suggestion
Applications	appropriate earlier sections or		or question
of Newton's	to Additional Problems.		
Laws:			
Section 6.4			
Drag Force			
and			
Terminal			
Speed			
Unit 1	Problem #115 uses a phrase	Revise "rotational" to	Туро
Mechanics:	"rotational velocity" and then	"tangential".	
Chapter 6	gives a quantity in units of		
Applications	cm/s. Here, "tangential		
of Newton's	velocity" or simply "speed"		
Laws:	might be more appropriate.		
Additional	"Rotational velocity" is too		
Problems	close to "angular velocity", so it		
	might be mistaken omega, and		
	while students can figure it out		
	from the given unit (that it is		
	linear velocity), it causes an		
	unnecessary confusion.		
Unit 1	In problem #42, there are two	The force will be updated in	Туро
Mechanics:	points referenced, (3,4) and	this problem, and revise the	
Chapter 7	(8,6). As such, the problem	second point from "(8 m, 6 m)"	
Work and	becomes practically	to "(6 m, 8 m)".	
Kinetic	unsolvable. However, if the		
Energy:	second point is switched to		
Section 7.1	(6,8), the problem, while still		
Work	challenging, becomes solvable.		
	With such a switch, the answer		
	would be 15 J.		

Unit 1	Problem #42: Provided	Revise "(8 m, 6 m)" to "(6 m, 8	Incorrect
Mechanics:	solutions state 5 Joules as final	m)".	answer,
Chapter 7	answer; I can only match that if		calculation,
Work and	I assume a typo in the provided		or solution
Kinetic	ordered pairs (the two points).		
Energy:	Works out fine if they are (3, 4)		
Section 7.1	and (6, 8) instead of (3, 4) and		
Work	(8, 6).		
Unit 1	Problem #39 Bungee cord	Revise "4.88 m ≤ x" to "x ≥ 4.88	Туро
Mechanics:	problem, 5th line, "and for	m".	
Chapter 7	4.88 m <= x " This is		
Work and	confusing as stated. Would		
Kinetic	prefer it said "and for x >=		
Energy:	4.88m, of k2 =111 N/m".		
Section 7.1			
Work			
Unit 1	The picture in Example 7.10	Delete "from a 0.22LR-caliber	Туро
Mechanics:	incorrectly shows a firearm	cartridge" from the first	
Chapter 7	cartridge flying through and	sentence.	
Work and	striking a bullet stop made of		
Kinetic	boards. A cartridge is an		
Energy:	ammunition assembly		
Section 7.3	packaging a projectile(s) (i.e.		
Work-	bullet, shot or slug), a		
Energy	propellant, and an ignition		
Theorum	device all within a case. When		
	fired, only the projectile(s)		
	exits the barrel and strikes the		
	target, while the case is		
	discarded from the firearm.		
Unit 1	The equation in the solution	Revise the equation on the left	Other
Mechanics:	currently reads:	to: $N = -mg + (mv 2^{2})/R =$	factual
Chapter 7	$N = -mgR + (m v 2^{2})/R = (-$	$(-mgR + 2mg(y \ 1 - R)) / R > 0.$	inaccuracy
Work and	$mg + 2mg(y \ 1-R)) / R > 0.$		in content
Kinetic	This is wrong. It should read:		
Energy:	$N = -mg + (m y 2^2)/R = (-$		
Section 7 3	mgR + 2mg(v - 1-R)) / R > 0		
Work-			
Energy			
Theorem			
Unit 1	Problem #61 has 'constant'	Delete one of the instances of	Τνρο
Mechanics	twice: "When a 3 0-kg block is	"constant"	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chapter 7	nushed against a massless		
Work and			

Kinetic	spring of force constant		
Energy:	constant"		
Section 7.3			
Work-			
Energy			
Theorem			
Unit 1	From customer:	Revise "–mg" to "–mgR".	Туро
Mechanics:			
Chapter 7	"Instead of writing (-		
Work and	mg+mv_2^2)/R it should be (-		
Kinetic	Rmg+mv_2^2)/R."		
Energy:			
Section 7.3			
Work-			
Energy			
Theorem			
Unit 1	The solution to Example 7.9	Revise this term in the solution	Incorrect
Mechanics:	has a step where there's a	to "-mg + mv^2/R".	answer,
Chapter 7	term that goes as [-mg +		calculation,
Work and	mv^2]/R. The units on that are		or solution
Kinetic	wrong. The term should go as -		
Energy:	mg + mv^2/R.		
Section 7.3			
Work-			
Energy			
Theorem			
Unit 1	The analysis of example 7.12 in	Revise the example to "An 80-	Incorrect
Mechanics:	openstax is incorrect. (This is	kg army trainee does pull-ups	answer,
Chapter 7	the example finding the	on a horizontal bar (Figure	calculation,
Work and	average power during pull	7.14). It takes the trainee 0.8	or solution
Kinetic	ups.)	seconds to raise the body from	
Energy:		a lower position to where the	
Section 7.4	The man is moving slowly and	chin is above the bar. How	
Power	so his acceleration can be	much power do the trainee's	
	taken to be zero. The force he	muscles supply moving his	
	applies must balance his	body from the lower position	
	weight, so this force points	to where the chin is above the	
	directly up and is almost	bar? (Hint: Make reasonable	
	constant. The power is P=F . v.	estimates for any quantities	
	So the average power in one	needed.)"	
	cycle (of up and down) is <p> =</p>		
	F . <v>, Here <> means</v>	Delete "(If you lift and lower	
	"average".	yourself at constant speed, the	
	_	force you exert cancels gravity	

But in a cycle, the initial and	over the whole pull-up cycle.)	
final positions are the same in	Thus, the work done by the	
a cycle, meaning that the	trainee's muscles (moving, but	
average velocity is 0. Therefore	not accelerating, his body) for	
the average power in a cycle is	a complete repetition (up and	
also zero!	down) is 2mg∆y." Revise the	
	equation in the solution.	
Now the power expended by		
the man is different than the		
power expended by the force		
vour muscles are expending.		
Think of the man holding his		
chin above the bar. This takes		
a lot of power! But the man		
isn't moving at all, so the		
power due to the force he's		
exerting is zero ($Fv = F = 0$). If		
instead you considered the		
man sitting on the bar, you can		
see that in that case, he's not		
expending much any power at		
all. It's the same for a heavy		
weight resting on a table. No		
power is expended by the		
table but if a human were to		
hold the same box they'd be		
expending a lot of power		
There are a lot of internal		
processes going on in a muscle		
to keep an object up that		
expend energy even if the		
object isn't moving Think		
about trying to start up hill		
with a manual transmission		
The power expended by the		
force supplied by the car to the		
wheels is zero. But the engine		
is revving and a lot of energy is		
heing consumed		
Senig consumed.		
The solution to this problem in		
openstax seems to have made		
the mistake of thinking that		
P=F, y = F,y . That's not true		

	Another way to think about this is to replace the man by a hanging mass and spring, with no energy dissipation. The average power expended by the spring in a cycle is zero, as energy is conserved. If you want to insist that the man is expending power going down, and that's what was meant, it certainly is not the same as the power going up. In fact, the man holding himself in place will be exerting at least the amount of power as him going down.		
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	The integration of -W should be 1/3*3(N/m^2)x^3, instead of the x^2.	This issue was addressed in another report and is correct in webview.	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	On page 365 the 2nd equation has brackets around (1/2ky)^2 and they should only be around the y variable. The same thing twice again on page 386, Example 8.4.	Revise "((1/2)ky_c)^2" to "(1/2)k(y_c)^2".	Туро
Unit 1 Mechanics: Chapter 8 Potential	In the equation for conservation of energy with respect to the y-axis, the equation for potential energy	Revise the end of the right side of the equation to "+ 1/2k(y_c)^2".	Other factual inaccuracy in content

Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	along a spring (right side of the equation) at point Yc is incorrect, as the entire expression was squared as opposed to squaring only the variable Yc, which was done in Equation 8.7. I have attached a screenshot with the correction		
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	The caption in Figure 8.4 states "with the y-axis pointing downwards". I would interpret this to mean that y is becoming positive as the mass falls, and the gravitational potential energy would need to be U = - m g y. This disagrees with the way the problem is solved below the figure where the final (lowest) position of the mass is negative. In all cases where "m g y" is the gravitational potential energy, y must be positive pointing away from the Earth.	Revise the first sentence in the caption to "A vertical mass- spring system, with the positive y-axis pointing upward."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	The following statement under "Systems of Particles", "parts of the system are either so big (like Earth, compared to an object on its surface) or so small (like a massless spring), that the changes those parts undergo are negligible IF included in the system (emphasis mine)" confuses the distinction between work and potential energy, and disagree with the text further on. To be considered as a potential energy, the Earth and/or springs must be included in the system. I would suggest changing this to "when", or something similar.	Revise "changes those parts undergo are negligible if" to "changes those parts undergo are negligible when".	General/ped agogical suggestion or question

Unit 1 Mechanics: Chapter 8 Potential	In equation 8.3 and the sentence before this, a minus sign is missing. The textbook states:	Revise the sentences before the equation to "As long as there is no friction or air resistance, the change in	Other factual inaccuracy in content
Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	As long as there is no friction or air resistance, the change in kinetic energy of the football equals the change in gravitational potential energy of the football. This can be generalized to any potential energy:	kinetic energy of the football equals negative of the change in gravitational potential energy of the football. This can be generalized to any potential energy:" and also add a minus sign before ΔU_AB.	
	$\Delta K_AB = \Delta_UAB.$ (8.3) This is not correct. The change in kinetic energy is minus the change in potential energy (or the sum of the change in kinetic energy plus the change in potential energy is zero).		
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	The equation for conservation of energy, specifically the spring component of Uc is incorrect. It should be 0.5 k y^2, not (0.5 k y)^2.	Revise the second line of the equation to "0 = 0 + mgy_C + 1/2 ky_C^2".	Туро
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	Example 8.4 has a few errors: I. The equations for solution to part b have a couple of errors. 1) The product inside the squared parenthesis on the second equation for potential energy at point B should be divided by 2, not 6. 2) This would yield a result of positive 0.12 J, not negative.	This example will be updated to revise these errors.	Incorrect answer, calculation, or solution

	II. Also, the equation for K for the solution to part C is missing the square of the velocity, i.e. $K = (mV^2)/2$.		
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.1 Potential Energy of a System	The word "energy" is misspelled the first time in step 3 of Figure 8.2.	This figure will be updated.	Туро
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.2 Conservativ e and Non- Conservativ e Forces	Problem #27: When providing the classic Lennard-Jones potential, the terms should have opposite signs. This way the equilibrium separation distance is a positive value under a sixth-root (no complex solutions). As is, the question and answer are correct, but don't seem to reflect what students would expect if they researched the Lennard-Jones potential. Also, perhaps it would be nice to have students graph the potential?	Revise the question to delete the negative sign before "a/x" and revise "seperation" to "separation". Also delete the negative sign before "2a" in the answer.	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.2 Conservativ e and Non- Conservativ e Forces	Problem #25: For part b), defining the potential energy from x = infinity would be impossible since the force diverges on that limit. Perhaps the force was meant to be X^- 2?	Delete part b) from this question.	Incorrect answer, calculation, or solution

Mechanics: Equation 8.14, the numerator change.	
Chapter 8 should be dx (instead of dt)	
Potential	
Energy and	
Conservatio	
n of Energy:	
Section 8.3	
Conservatio	
n of Energy	
Unit 1Problem #44: First, the answerRevise the problem to "A smallOther	
Mechanics: is 6w, not 8w. I found this in an ball is tied to a string and set factual	
Chapter 8 old book: rotating with negligible friction inaccura	:y
Potential https://books.google.com/boo in a vertical circle. If the ball in conter	t
Energy and ks?id=9Go7AQAAIAAJ&pg=PA2 moves over the top of the	
Conservatio 95 (and I checked it for a circle at its slowest possible	
n of Energy: specific case). speed (so that the tension in	
Section 8.3 the string is negligible), what is	
Conservatio Second, the assumption that the tension in the string at the	
n of Energy "the ball's speed is zero as it bottom of the circle, assuming	
sails over the top of the circle" there is no additional energy	
is impossible. If the ball's speed added to the ball during	
is 0 at that point, it will simply rotation?"	
fall straight down. In fact, if the	
ball is moving so slowly that its	
speed would be 0 at the top, it	
will never reach the top.	
Before it gets to that point, it	
will be going too slowly to stay	
on the circular path. The	
minimum speed at the top for	
the ball to stay on the circular	
path is sqrt{rg} (giving a	
The answer 6w is true in	
general as long as the speed at	
the ton is greater than or equal	
to the minimum but if you	
want to make the problem	
more specific so students can	
use a number instead of v you	
could give the speed at the	

	top, maybe as sqrt{rg} or some multiple of it.		
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Section 8.5 Sources of Energy	Problem #65 needs to specify that the initial position of the block is where the spring is not stretched or compressed, that is, when its length is the equilibrium length when it's horizontal. The only way I could tell that was by looking at the answer.	Revise the first sentence in the question to "A block of mass 200 g is attached at the end of a massless spring at equilibrium length of spring constant 50 N/cm."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Additional Problems	Problem #76: Correct "surfarce" to "surface".	Our reviewers accepted this change.	Туро
Unit 1 Mechanics: Chapter 8 Potential Energy and Conservatio n of Energy: Additional Problems	It is stated that v2 = (m/m)+M(v1). I believe that the parentheses are misplaced. Using conservation of linear momentum for inelastic collisions, it should be written as v2=[m/(m+M)]v1.	This issue was addressed in another report and is correct in the most recent version.	Туро
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.2 Impulse and Collisions	Example 9.3: Captain Kirk never flew the starship you show in the image, that is the Enterprise-E. Either change the text to involve Mr. Data, and Captain Picard, OR Change the image to a picture of the Enterprise from JJ Abrams' 2009 movie. Yes, this is very important to me.	Revise the text "'Mister Sulu, take us out; ahead one-quarter impulse.' With this command, Captain Kirk of the starship Enterprise (Figure 9.11) has his ship start from" to "When Captain Picard commands, "Take us out; ahead one- quarter impulse," the starship Enterprise (Figure 9.11) starts from"	Other factual inaccuracy in content

Unit 1	The solution for part a) is	Revise "the ball's change of	Туро
Mechanics:	asking for the change of	velocity" to "the ball's change	
Chapter 9	momentum. Hence, the last	of momentum".	
Linear	sentence preluding the answer		
Momentum	should state "Thus, the ball's		
and	change of momentum during		
Collisions:	the bounce is", not velocity.		
Section 9.3			
Conservatio			
n of Linear			
Momentum			
Unit 1	Figure 9.14: Momentum vector	Revise the subscript 3 after p	Туро
Mechanics:	label p3 in the caption should	to 2.	
Chapter 9	instead be p2 as in the figure.		
Linear			
Momentum			
and			
Collisions:			
Section 9.3			
Conservatio			
n of Linear			
Momentum			
Unit 1	The subscripts used in the	This issue was addressed in	Туро
Mechanics:	diagram is reversed in the	another report and is correct	
Chapter 9	solution.	in webview.	
Linear			
Nomentum			
and			
Collisions:			
Section 9.4			
Collisions			
Linit 1	The definition of "porfactly	Revise the paragraph starting	Other
Mechanics	inelastic" is incorrect (or at	"In the extreme case, " to	factual
Chanter 9	least different than every other	"Any collision where the	inaccuracy
Linear	text definition) OpenStay save	objects stick together will	in content
Momentum		result in the maximum loss of	
and	In the extreme case multiple	kinetic energy (i.e. Kf will be a	
Collisions:	objects collide. stick together	minimum). Such a collision is	
Section 9.4	and remain motionless after	called perfectly inelastic. In the	
Types of	the collision. Since the objects	extreme case, multiple objects	
Collisions	are all motionless after the	collide, stick together, and	
	collision, the final kinetic	remain motionless after the	
	energy is also zero; the loss of	collision. Since the objects are	

kinetic energ	gy is a maximum.	all motionless after the	
Such a collis	ion is said to be	collision, the final kinetic	
perfectly ine	lastic.	energy is also zero; therefore,	
• If 0 <kf <ki,<="" td=""><td>the collision is</td><td>the loss of kinetic energy is a</td><td></td></kf>	the collision is	the loss of kinetic energy is a	
inelastic.		maximum.	
• If Kf =0, th	e collision is		
perfectly ine	lastic.	If 0 < Kf <ki, collision="" is<="" td="" the=""><td></td></ki,>	
• If Kf =Ki, th	e collision is	inelastic.	
elastic.			
		If Kf is the lowest energy, or	
This implies	perfectly inelastic	the energy lost by both objects	
is ONLY whe	n both objects	is the most, the collision is	
stick togethe	er AND STOP. In all	perfectly inelastic (objects stick	
other texts,	perfectly inelastic	together).	
is when two	objects stick		
together	that is the MAX	If Kf = Ki, the collision is	
loss of kinet	ic energy for that	elastic."	
particular co	llision. The most		
extreme cas	e of perfectly		
inelastic is w	hen they stick		
together and	d stop but it is NOT		
the only per	fectly inelastic		
case.			
I think it sho	uld read:		
Any collision	where the objects		
stick togethe	er will result in the		
maximum lo	ss of kinetic		
energy (i.e. I	<f a<="" be="" td="" will=""><td></td><td></td></f>		
minimum). S	Such a collision is		
said to be pe	erfectly inelastic. In		
the extreme	case, multiple		
objects colli	de, stick together,		
and remain	motionless after		
the collision	. Since the objects		
are all motic	onless after the		
collision, the	e final kinetic		
energy is als	o zero; obviously		
the loss of ki	inetic energy is a		
maximum.			
• If 0 < Kf <k< td=""><td>i, the collision is</td><td></td><td></td></k<>	i, the collision is		
inelastic.			
• Kf is a min	imum when the		

	 collision is perfectly inelastic (objects stick together). If Kf = Ki, the collision is elastic. 		
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.5 Collisions in Multiple Dimensions	The third sentence under the Strategy paragraph for the Example has an extra "the" between "for" and "just".	The typo has been corrected.	Туро
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.5 Collisions in Multiple Dimensions	Example 9.15: When substituting to get the numeric result for the final x- and y- momenta of mass 3, incorrect masses are substituted for m_1 (14.5 kg is used but it should be 4.5 kg) and m_2 (4.5 kg is used but it should be 3.2 kg). This leads to incorrect numeric results in the remainder of the example solution.	The masses will all be changed as suggested.	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.5 Collisions in Multiple Dimensions	In the second sentence of Problem #59, "dear" should be "deer".	Our reviewers accepted this change.	Туро
Unit 1 Mechanics: Chapter 9 Linear Momentum and	Thank you for correcting the errors in the question. However, Problem #53 now says "dove" in the second sentence and "pigeon" in the third, which is a bit distracting.	Our reviewers accepted this change.	Other factual inaccuracy in content

Collisions: Section 9.5 Collisions in Multiple	Making them both "pigeon" would be the best.		
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.7 Rocket Propulsion	In equations, m_i is used for the initial mass of the rocket, while the text uses m_0. I found two such places: in 'Learning Objectives': "A fully fueled rocket ship in deep space has a total mass m0", and below eq. (9.38): "decreases the total rocket mass from m_0 down to m." I suggest to use m_0 everywhere, as p_i and p_f are used to discuss changes corresponding to dv (maybe even some major review of notation should be considered here, to clearly distinguish between quantities corresponding to dv and Delta- v).	Revise "m_i" to "m_0".	Туро
Unit 1 Mechanics: Chapter 9 Linear Momentum and Collisions: Section 9.7 Rocket Propulsion	The equation expanding initial momentum to final momentum (pi = pf), should solve to: m dv = dm(gas) dv + dm(gas) u.	Revise the last term in this equation from "v" to "u".	Туро
Unit 1 Mechanics: Chapter 9 Linear Momentum and	The mean radius of the Earth's orbit used is incorrect. It should be 149.6 million km or 1.496e11 m instead of 1.496e9. The calculated center	This issue was addressed in another report and is correct in webview.	Incorrect answer, calculation, or solution

Collisions:	of mass should then be		
Answer Key	approximately 460 km.		
Collisions: Answer Key Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Introduction	of mass should then be approximately 460 km. There are three problems with the caption to Figure 10.1. Most obviously, the information is now out of date because US wind capacity has nearly doubled since 2012. Secondly, it confuses installed capacity with average power output, incorrectly implying that it takes 60 GW to power 15 million US homes and that there was at least one instant during 2012 when the actual power output was 60 GW. Third and most importantly, the phrase "for a year" incorrectly implies that "power" and "gigawatts" refer to energy generated over some specific amount of time, rather than their actual meaning, energy per unit time. Here is a suggested fix for all three problems: "During 2019,	Revise the caption to "Brazos wind farm in west Texas. During 2019, wind farms in the United States had an average power output of 34 gigawatts, which is enough to power 28 million homes. (credit: modification of work by U.S. Department of Energy)"	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed Axis Rotation: Section 10.1	wind farms in the US had an average power output of 34 gigawatts, enough to power 28 million homes." I am transcribing your odd- numbered problems into an open-source collection of quiz questions. Problem 35 (Chap.10 Vol.1) states a formula in so-called "handy" or	Revise "velocity from" to "velocity for 3.0 s from" and revise "for 3.0 s" to "where t is measured in seconds" in the question stem.	General/ped agogical suggestion or question
Rotational Variables	"formulary" form: \$\omege\$=(25t)rad/s. You need to specify that t is measured in seconds, because such formulas are routinely expressed in mixed units. For example in plasma physics one might express the gyro-radius		

	of ion in centimeters, where the energy is in electron-volts, the magnetic field is in kilogauss, and the mass in atomic mass units. See the attached pdf file for an example of how this might be fixed:		
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.1 Rotational Variables	Summary: The second expression in the equality ω = lim $\Delta t \rightarrow 0$ ($\Delta \omega / \Delta t$) = d θ /dt should be lim $\Delta t \rightarrow 0$ ($\Delta \theta / \Delta t$).	Revise "ω" to "θ".	Туро
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.1 Rotational Variables	The last sentence before the Figure (referring to Fig. 10.7b) should be changed to "is negative, then the angular acceleration is negative and points along the -z-axis."	Revise "+z" to "—z".	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.2 Rotation with Constant Angular Acceleration	The last equation of Section 10.2 should start with \theta = 	In the last equation before the Significance" section, revise "θ_0 =" to "θ_f".	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.2 Rotation with Constant	On deriving equation (10.2) there is an equation before the following sentence "where we have set $t_0=0$. Now we rearrange to obtain". In this equation the second line [before equality] involves time t (and dt) in the integrand	Revise "atdt" to "at'dt"".	Туро

Angular	instead of time t' and dt' (i.e t		
Acceleration	prime).	Revise the solution to part (b)	Incorrect
Mechanics:	and text for 41b in chapter 10	to "220"	answer
Chanter 10	lists the solution as 200 radians		calculation
Fixed-Axis	but the correct solution is 220		or solution
Rotation:	radians		or solution
Section 10.2			
Rotation			
with			
Constant			
Angular			
Acceleration			
Unit 1	Chapter 10, Probl. 52: "0.3m"	Our reviewers accepted this	Туро
Mechanics:	should be "0.3 m".	change.	
Chapter 10			
Fixed-Axis			
Rotation:			
Section 10.3			
Relating			
Angular and			
Translationa			
l Quantities			
Unit 1	Problem #72 refers to the	Revise "cylindrical" to	Туро
Mechanics:	"cylindrical head bolts" of a	"cylinder".	
Chapter 10	car, but they're called "cylinder		
Fixed-Axis	head bolts" (the bolts that		
Rotation:	fasten the cylinder head to the		
Section 10.6	cylinder block). All bolts are		
lorque	cylindrical, as far as I know, so		
	"cylindrical head bolts" would		
Linit 1	At the University Develop	Our roviowars assented this	Tupo
Unit 1 Mochanics:	At the University Physics	change	туро
Chanter 10	Example 10.16 there is a		
Fixed-Avic	mistake The mass of the		
Rotation	merry-go-round is 200kg at		
Section 10 7	question and 50kg at answer		
Newton's	Just wanted to let you know		
Second Law			
for Rotation			
Unit 1	Problem #105: Either the	Revise part (b) in the question	Incorrect
Mechanics:	question text for part (b) is	stem to "What is the work	answer,

Chapter 10	misleading or the answer in	done by the cord on the	calculation,
Fixed-Axis	both the student and teacher	pulley?"	or solution
Rotation:	solutions for part (b) is wrong.		
Section 10.8	The answer given actually		
Work and	corresponds to the question:		
Power for	"what is the work done by the		
Rotational	cord on the pulley?" However,		
Motion	the work done by gravity on		
	the system to move the block		
	is the same as the work done		
	by gravity just on the block,		
	namely, \$\$m g d sin\theta\$\$ =		
	6.3 J. Note that the work done		
	on and within the system		
	consists of the work done on		
	the block by gravity, the work		
	done by the cord on the block,		
	and the work done by the cord		
	on the pulley. The latter two		
	are equal and opposite, with		
	magnitudes given by the		
	answer in the text: 1.25 J.		
Unit 1	Problem #104 gives the force	Revise the first part of the	Other
Unit 1 Mechanics:	Problem #104 gives the force and lever arm that the athlete	Revise the first part of the question to "An athlete in a	Other factual
Unit 1 Mechanics: Chapter 10	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and	Revise the first part of the question to "An athlete in a gym applies a constant force of	Other factual inaccuracy
Unit 1 Mechanics: Chapter 10 Fixed-Axis	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation:	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel.	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion Unit 1	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel.	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content Other
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion Unit 1 Mechanics:	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel. The equation for the net torque in the key equations is	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content Other factual
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion Unit 1 Mechanics: Chapter 10	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel. The equation for the net torque in the key equations is incorrect. It says that the	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content Other factual inaccuracy
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion Unit 1 Mechanics: Chapter 10 Fixed-Axis	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel. The equation for the net torque in the key equations is incorrect. It says that the magnitude of the net torque is	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation: Section 10.8 Work and Power for Rotational Motion Unit 1 Mechanics: Chapter 10 Fixed-Axis Rotation:	Problem #104 gives the force and lever arm that the athlete applies to the *pedals*, and the rotation rate of the *wheel*. To use the equation P = tau*omega, the torque and the angular speed must pertain to the same object. Either the problem should give the omega of the wheel, which should be much lower than 10 rev/s, or it should give the radius of the sprocket or other information so the student can find the omega of the pedals from that of the wheel. The equation for the net torque in the key equations is incorrect. It says that the magnitude of the net torque is the sum of the magnitudes of	Revise the first part of the question to "An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min."	Other factual inaccuracy in content Other factual inaccuracy in content

Key Equations	<pre>quantity, and this should be a vector sum. The LaTeX form of this equation should be \vec{\tau}_{net} = \sum_i \vec{tau}_i. The page with the incorrect equation is at the following URL. https://openstax.org/books/un iversity-physics-volume- 1/pages/10-key-equations</pre>		
Unit 1 Mechanics: Chapter 11 Angular Momentum	In Chapter 6.2, the indices for static and kinetic friction use small letters 's' and 'k'. In Chapter 11, capital letters 'S' and 'K' are used. This is not really important but makes the book more consistent across Chapters.	Revise capital K and S subscripts and lowercase them all for consistency.	General/ped agogical suggestion or question
Unit 1 Mechanics: Chapter 11 Angular Momentum: Section 11.1 Rolling Motion	Static friction is in the wrong direction. It should be facing the direction of motion to prevent slipping.	This figure will be updated.	Other factual inaccuracy in content
Unit 1 Mechanics: Chapter 11 Angular Momentum: Section 11.1 Rolling Motion	Under equation 11.4, the text includes the statement, "The acceleration will also be different for two rotating cylinders with different rotational inertias." Because the mass and radius cancel out of the acm equation, this is incorrect. Perhaps the statement should read that the acceleration will be different for two rotating OBJECTS with different rotational inertias, clarifying that the acceleration different I formulas.	Revise "rotating cylinders" to "rotating objects".	Other factual inaccuracy in content

Unit 1	The text for Fig. 11.6 mentions	This figure will be updated.	General/ped
Mechanics:	point P which is not shown in		agogical
Chapter 11	the figure. It would be nice to		suggestion
Angular	have the contact point P of ball		or question
Momentum:	and surface in the drawing as		
Section 11.1	in Fig. 11.3 b).		
Rolling			
Motion			
Unit 1	Example 11.1 involves rolling	This example will be revised.	Incorrect
Mechanics:	without slipping, so the	Delete "f_s $\leq \mu_s$ N," and	answer,
Chapter 11	relevant friction force is that of	revise the equation after "we	calculation,
Angular	static friction. The inequality	can then solve for the linear	or solution
Momentum:	f_x <= mu_s*N is used, but the	acceleration of the center of	
Section 11.1	next step, which writes the	mass from these equations:" to	
Rolling	acceleration of the center of	"a_CM = gsin θ – fs/m". Also	
Motion	mass, assumes that the	revise "We write" to "We	
	equality holds (f_s = mu_s*N).	rewrite"	
	Equality cannot be assumed		
	here. Plus, the resulting		
	equation [(a_CM)_x =		
	g(sin(theta)-mu_s*cos(theta))]		
	is not actually used because		
	the acceleration is written in		
	terms of f_s for the remainder		
	of part (a). Later, part (b) says,		
	"Because slipping does not		
	occur, f_s<=mu_s*N." I think		
	this is somewhat confusing		
	because that inequality is		
	always true of static friction.		
	The connection to rolling		
	motion is that rolling without		
	slipping means that static		
	friction should be used as		
	opposed to kinetic friction.		
Unit 1	Problem #56 poses a physically	Revise "730 m/s" to "6260	Other
Mechanics:	impossible orbit for a satellite	m/s".	factual
Chapter 11	in an orbit around Earth. For		inaccuracy
Angular	orbital motion like this,		in content
Momentum:	specifying the apogee (2500		
Section 11.3	km from surface, or 8870 km		
Conservatio	for r_A) and perigee (500 km		
n of Angular	from surface, or 6870 km for		
Motion	r_P) fully specifies the		

	parameters of the elliptical		
	orbit and the speed at apogee		
	cannot be additionally		
	specified arbitrarily without		
	either violating conservation of		
	mechanical energy or		
	conservation of angular		
	momentum. While the intent		
	is clear (students should use		
	conservation of angular		
	momentum), for physical		
	correctness, speed at apogee		
	should be specified at the		
	correct value. Using given		
	apogee and perigee altitudes,		
	you need speed of 6.263 km/s		
	(or some number rounded to		
	appropriate significant figures)		
	at apogee in order to conserve		
	mechanical energy.		
Unit 1	As written, problem #52 is a	In the question stem, revise	General/ped
Mechanics:	trick question. It says "The	"The small mass suddenly	agogical
Chapter 11	small mass suddenly separates	separates from the disk." to	suggestion
Angular	from the disk," and for a	"The small mass, while	or question
Momentum:	physical situation like that, the	attached to the disk, slides	
Section 11.3	answer to the question "What	gradually to the center of the	
Conservatio	is the disk's final rotation	disk."	
n of Angular	rate?" is that the final rotation		
Motion	rate did not change (the small		
	mass takes its angular		
	momentum with it and the		
	disk doesn't get to "keep" the		
	total angular momentum).		
	I don't think this approach is		
	pedagogically useful, and I		
	suggest changing the wording		
	of the question. *so that* the		
	total angular momentum will		
	be conserved while changing		
	the rotational inertia of the		
	objectmaybe something		
	along the line of "The small		
	mass while attached to the		

	disk, slides gradually to the center of the disk." (Or any other description that achieves the same change of rotational inertia while allowing for a mechanism of angular momentum transfer from the small mass to the disk.)		
Unit 1 Mechanics: Chapter 11 Angular Momentum: Section 11.4 Precession of a Gyroscope	Problem #75 currently reads: "The center of mass of the disk is 10 cm from a pivot which is also the radius of the disk. What is the precession angular velocity?" What is meant by this is that the center of mass is 10 cm from the pivot point of the gyroscope, and additionally, the radius of the gyroscope is 10 cm. These are completely unrelated quantities and the current wording is very confusing. Suggested correction would be to give the disk a unique radius and state it separately.	Revise the second sentence in problem 75 to "The center of mass of the disk is 15 cm from a pivot with a radius of the disk of 10 cm." Revise the answer to problem 75 to "1.17 rad/s". Revise the last sentence in problem 76 to "If the mass of the rotating disk is 0.4 kg and its radius is 30 cm, and the distance from the center of mass to the pivot is 40 cm, what is the rotation rate in rev/s of the disk?"	Other
Unit 1 Mechanics: Chapter 11 Angular Momentum: Section 11.4 Precession of a Gyroscope	In Figure 11.21, the precession angle is labeled d $_{\phi}$, but it should simply be d ϕ .	This figure will be updated.	Туро
Unit 1 Mechanics: Chapter 12 Static Equilibrium and Elasticity: Section 12.1	The answer key for Problem #27 only lists the direction. The magnitude is missing. It should be 4472 N.	The answer key will be updated to include 4,472 N.	Incorrect answer, calculation, or solution

Conditions			
for Static			
Unit 1 Mechanics: Chapter 12 Static Equilibrium and Elasticity: Section 12.2 Examples of Static Equilibrium	Problem #37: I keep getting 132.8 Newtons for the friction. There seems to be some confusion about this (see ID 8555 submitted 5/3/2019.) See the attached Pdf file or visit: en.wikiversity.org/wiki/OpenSt ax_University_Physics/V1/Ch_ 13_P_37:_torque	Revise the answer from "376" to "132.8".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 12 Static Equilibrium and Elasticity: Section 12.3 Stress, Strain, and Elastic Modulus	Problem #47: The answer in both the online version of the textbook and in the ISM is stated as 9.00cm. It should be 32.9 cm.	Revise the answer to "32.9 cm".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 12 Static Equilibrium and Elasticity: Additional Problems	The answer listed for Problem #71 for the force from the floor is incorrect. It should be a normal force of 167 N and a friction force of 57.7 N, giving a total force of 177 N at an angle of 109 degrees with respect to the horizontal. The coefficient of static friction should be 0.346.	Revise "192.4" to "177", revise "60" to "109", and revise "0.577" to "0.346".	Incorrect answer, calculation, or solution
Unit 1 Mechanics: Chapter 13 Gravitation: Section 13.3 Gravitationa I Potential	https://openstax.org/l/21escap evelocit redirect is broken. Needs new link.	This link will be updated.	Broken link

Unit 1 Mechanics: Chapter 13 Gravitation:Problem #39: The (a) is missing in front of the first question.Add "(a)" before the first part of the question.TypoGravitation: Section 13.4 Satellite Orbits and EnergyIn the Solution of Example 13.10, when solving for M_E, thapter 13 the period, T is written in the gravitation: equation with units of meters section 13.4Revise "10^6 m" to "10^6 s".TypoUnit 1 Mechanics: Section 13.4 Satellite Chapter 13 Chapter 13 Chapter 13In the Solution of Example equation with units of meters rather than seconds. I suggest rather than seconds. I suggest rather than seconds. I suggest section 13.4Revise "10^6 m" to "10^6 s".TypoUnit 1 Chapter 13 Gravitation: Equation 13.10. In the equation 13.10. In the equation 13.10. In the section 13.5This figure will be updated.Other factual inaccuracy in contentKepler's Laws of Motion(perihelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Figs.13.6 and 13.7 have the Mechanics: Gravitation:Figure 13.20 showsOther factual inaccuracy in contentUnit 1 Section 13.5Figure 13.20 showsSate 3.20 showsOther factual inaccuracy in content	Energy and Total Energy			
Mechanics: Chapter 13 Gravitation: Section 13.4 	Unit 1	Problem #39: The (a) is missing	Add "(a)" before the first part	Туро
Chapter 13 Gravitation: Section 13.4 StatelliteIn the Solution of Example Revise "10^6 m" to "10^6 s".TypoUnit 1 Mechanics: Gravitation: Section 13.4 the period, T is written in the equation with units of meters Section 13.4 Statellite Chapter 13 Statellite Chapter 13 He angle theta identified in Figure 13.17 is inconsistent withe the definition of theta in Equation 13.10. In the equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.This figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Figs 13.6 and 13.7 have the Mechanics: Chapter 13 parihelion.Figure 13.20 will be updated.Other factual in contentUnit 1 Planetary MotionFigure Corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Planetary MotionFigure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Planetaria Place. The eccentricity of these Gravitation:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Place. The eccentricity of these <br< td=""><td>Mechanics:</td><td>in front of the first question.</td><td>of the question.</td><td>,,</td></br<>	Mechanics:	in front of the first question.	of the question.	,,
Gravitation: Section 13.4 Satellite Orbits and EnergyIn the Solution of Example 13.10, when solving for M_E, the period, T is written in the equation with units of meters Section 13.4 rather than seconds. I suggest changing "2.36 x 10^6 6 m" to '2.36 x 10^6 6 m".Revise "10^6 m" to "10^6 s".TypoUnit 1 Gravitation: equation with units of meters section 13.4 rather than seconds. I suggest changing "2.36 x 10^6 6 m".Revise "10^6 m" to "10^6 s".TypoUnit 1 Mechanics: EnergyThe angle theta identified in Figure 13.17 is inconsistent with the definition of theta in Equation 13.10. In the section 13.5This figure will be updated.Other factual inaccuracy in contentKepler's Motion(perihelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics: foci of the ellipses in the wrong Phace. The accentricity of these Gravitation: ellipses is about 0.7, not about section 13.5Figure 13.20 will be updated.Other factual inaccuracy in content	Chapter 13			
Section 13.4 Satellite Orbits and EnergyIn the Solution of Example Revise "10^6 m" to "10^6 s".TypoMechanics: Gravitation: equation with units of meters section 13.4 rather than seconds. I suggest changing "2.36 x 10^6 m" to "2.36 x 10^6 m" to "2.36 x 10^6 s".Revise "10^6 m" to "10^6 s".TypoUnit 1 meters Section 13.4 rather than seconds. I suggest changing "2.36 x 10^6 m" to "2.36 x 10^6 s".This figure will be updated.Other factual inaccuracy in contentUnit 1 Gravitation: Section 13.5The angle theta identified in equation the minimum r (aphelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the figure these definitions are switched. The equation is in the standard form used in the figure that should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 figs.13.6 and 13.7 have the Mechanics: foci of the ellipses in the wrong Chapter 13 place. The eccentricity of these Gravitation: ellipses is about 0.7, not aboutFigure 13.20 will be updated.Other factual inaccuracy in content	Gravitation:			
Satellite Orbits and EnergyIn the Solution of Example Nechanics:Revise "10^6 m" to "10^6 s".TypoUnit 1In the Solution of Example nechanics:13.10, when solving for M_E, chapter 13Revise "10^6 m" to "10^6 s".TypoGravitation: Section 13.4equation with units of meters rather than seconds. I suggest changing "2.36 x 10^6 s".Revise "10^6 m" to "10^6 s".TypoUnit 1 EnergyThe angle theta identified in Figure 13.17 is inconsistent (Chapter 13 with the definition of theta in Equation 13.10. In the Section 13.5This figure will be updated.Other factual inaccuracy in contentSection 13.5 Motionequation the minimum r (perihelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factualUnit 1Figure End should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factualUnit 1Figure S.3.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.3.6 and 13.7 have the foci of the ellipses in the wrong Chapter 13 blace. The eccentricity of these Gravitation:Figure 13.20 showsOther	Section 13.4			
Orbits and EnergyIn the Solution of ExampleRevise "10^6 m" to "10^6 s".TypoUnit 1In the Solution of ExampleRevise "10^6 m" to "10^6 s".TypoMechanics:13.10, when solving for M_E, equation with units of metersRevise "10^6 m" to "10^6 s".TypoGravitation:equation with units of metersequation with units of metersRevise "10^6 m" to "10^6 s".The period, T is written in the equation with units of metersSatellitechanging "2.36 x 10^6 m" toThis figure will be updated.OtherOrbits and"2.36 x 10^6 s".factual inaccuracyfactual inaccuracyEnergyunit 1The angle theta identified in the definition of theta in Equation 13.10. In the Section 13.5This figure will be updated.Other factual inaccuracy in contentSection 13.5equation the minimum r (aphelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Setton 13.50.5 as shown. Fig 13.20 showsFigure 13.20 will be updated. <t< td=""><td>Satellite</td><td></td><td></td><td></td></t<>	Satellite			
EnergyIn the Solution of ExampleRevise "10^6 m" to "10^6 s".TypoUnit 1In the Solution of ExampleRevise "10^6 m" to "10^6 s".TypoMechanics:13.10, when solving for M_E, chapter 13the period, T is written in the equation with units of metersFigure 13.10, when solving for M_E, equation with units of metersFigure 13.10, when solving for M_E, equation with units of metersSection 13.4rather than seconds. I suggest changing "2.36 x 10^6 6".This figure will be updated.OtherUnit 1The angle theta identified in Figure 13.17 is inconsistentThis figure will be updated.OtherMechanics:Figure 13.10. In the equation the minimum r (perihelion) corresponds to theta=0, while the maximum r PlanetaryQuerie the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.OtherUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Section 13.5Other factual inaccuracy in contentMotion	Orbits and			
Unit 1In the Solution of Example Mechanics:Revise "10^6 m" to "10^6 s".TypoMechanics:13.10, when solving for M_E, the period, T is written in the equation with units of meters Section 13.4Revise "10^6 m" to "10^6 s".TypoSatellite orbits and Energyraher than seconds. I suggest changing "2.36 x 10^6 s".This figure will be updated.Other factual inaccuracy in contentUnit 1 Gravitation:The angle theta identified in Figure 13.17 is inconsistent chapter 13 with the definition of theta in gravitation:This figure will be updated.Other factual inaccuracy in contentSection 13.5 equation the minimum r (aphelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Mechanics:Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual in contentUnit 1 Mechanics:Figs. is about 0.7, not about section 13.50.5 as shown. Fig 13.20 showsFigure 13.20 will be updated.Other factual in content	Energy			
Mechanics:13.10, when solving for M_E, the period, T is written in the equation with units of meters Section 13.4the period, T is written in the equation with units of meters Section 13.4Satellite Changing "2.36 x 10^6 s". EnergyThis figure will be updated.Other factual inaccuracy in contentUnit 1 Gravitation: Equation 13.5The angle theta identified in figure 13.17 is inconsistent with the definition of theta in Gravitation: Equation 13.10. In the Section 13.5This figure will be updated.Other factual inaccuracy in contentKepler's Motion(perihelion) corresponds to theta=180. In the figure thas definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1 Mechanics: Foci of the ellipses in the wrong Chapter 13 place. The eccentricity of these Gravitation: ellipses is about 0.7, not aboutFigure 13.20 will be updated.Other factual inaccuracy in content	Unit 1	In the Solution of Example	Revise "10^6 m" to "10^6 s".	Туро
Chapter 13the period, T is written in the equation with units of meters Section 13.4the period, T is written in the equation with units of meters rather than seconds. I suggest changing "2.36 x 10^6 m" to "2.36 x 10^6 s".here restrict Tomoton the restrict The angle theta identified in Mechanics:This figure will be updated.Other factual inaccuracy in contentUnit 1The angle theta identified in Section 13.5This figure will be updated.Other factual inaccuracy in contentKepler's(perihelion) 13.10. In the sequation the minimum r (perihelion) corresponds to theta=0, while the maximum r Planetary MotionThe figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.OtherUnit 1Figs.13.6 and 13.7 have the foci of the ellipses in the wrong Gravitation:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the foci of the ellipses in the wrong Gravitation:Figure 13.20 will be updated.Other factual inaccuracy in content	Mechanics:	13.10, when solving for M_E,		
Gravitation:equation with units of meters rather than seconds. I suggest changing "2.36 x 10^6 m" to Orbits and EnergyImage the the seconds of the second of the s	Chapter 13	the period, T is written in the		
Section 13.4 Satellite Orbits and Energyrather than seconds. I suggest changing "2.36 x 10^6 m" to "2.36 x 10^6 s".Image the second secon	Gravitation:	equation with units of meters		
Satellitechanging "2.36 x 10^6 m" to "2.36 x 10^6 s".Image: SatelliteImage: SatelliteOrbits and Energy"2.36 x 10^6 s".This figure will be updated.Other factualUnit 1The angle theta identified in Mechanics:This figure will be updated.Other factualChapter 13with the definition of theta in Equation 13.10. In the section 13.5Equation 13.10. In the sequation the minimum r kepler's (perihelion) corresponds to theta=0, while the maximum r PlanetaryImage: Sate Sate Sate Sate Sate Sate Sate Sate	Section 13.4	rather than seconds. I suggest		
Orbits and Energy"2.36 x 10^6 s".Image: Section 13.5ContertUnit 1The angle theta identified in Figure 13.17 is inconsistentThis figure will be updated.OtherChapter 13with the definition of theta in Equation 13.10. In the section 13.5Equation 13.10. In the equation the minimum r (perihelion) corresponds to Laws of theta=0, while the maximum r PlanetaryImage: Section 13.5Image: Section 13.5Motiontheta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 showsOtherGravitation:ellipses is about 0.7, not about Section 13.5Other	Satellite	changing "2.36 x 10^6 m" to		
EnergyImage definitionThis figure will be updated.OtherUnit 1The angle theta identified in Figure 13.17 is inconsistentThis figure will be updated.OtherChapter 13with the definition of theta in Equation 13.10. In the section 13.5Equation 13.10. In the equation the minimum r (perihelion) corresponds to Laws of theta=0, while the maximum r Planetary (aphelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 showsOther factual inaccuracy in content	Orbits and	"2.36 x 10^6 s".		
Unit 1The angle theta identified in Figure 13.17 is inconsistentThis figure will be updated.Other factualMechanics:Figure 13.17 is inconsistentinaccuracy in contentChapter 13with the definition of theta in Equation 13.10. In the equation the minimum r (perihelion) corresponds to theta=0, while the maximum r Planetary(perihelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.OtherUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.OtherInaccuracy in contentfactual in contentfactual in contentSection 13.50.5 as shown. Fig 13.20 showsFigure 13.20 showsOther	Energy			
Mechanics:Figure 13.17 is inconsistentfactualChapter 13with the definition of theta ininaccuracyGravitation:Equation 13.10. In thein contentSection 13.5equation the minimum rin contentKepler's(perihelion) corresponds toin contentLaws oftheta=0, while the maximum rin contentPlanetary(aphelion) corresponds toin theta=180. In the figure thesedefinitions are switched. Theequation is in the standardform used in the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.perihelion.Unit 1Figs.13.6 and 13.7 have theMechanics:foci of the ellipses in the wrongChapter 13place. The eccentricity of theseGravitation:ellipses is about 0.7, not aboutSection 13.50.5 as shown. Fig 13.20 shows	Unit 1	The angle theta identified in	This figure will be updated.	Other
Chapter 13with the definition of theta ininaccuracyGravitation:Equation 13.10. In thein contentSection 13.5equation the minimum rin contentKepler's(perihelion) corresponds toin contentLaws oftheta=0, while the maximum rin contentPlanetary(aphelion) corresponds toin theta=180. In the figure thesedefinitions are switched. Theequation is in the standardin the field, and so itis the figure that should becorrected. The angle thetain the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.Unit 1Figs.13.6 and 13.7 have theFigure 13.20 will be updated.OtherMechanics:foci of the ellipses in the wrongfactualinaccuracyGravitation:ellipses is about 0.7, not aboutin content	Mechanics:	Figure 13.17 is inconsistent		factual
Gravitation:Equation 13.10. In thein contentSection 13.5equation the minimum rin contentKepler's(perihelion) corresponds toin theta=0, while the maximum rPlanetary(aphelion) corresponds toin theta=180. In the figure theseMotiontheta=180. In the figure thesedefinitions are switched. Theequation is in the standardform used in the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.Figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have theFigure 13.20 will be updated.Mechanics:foci of the ellipses in the wrongfactualchapter 13place. The eccentricity of thesein accuracyGravitation:ellipses is about 0.7, not aboutin content	Chapter 13	with the definition of theta in		inaccuracy
Section 13.5equation the minimum rKepler's(perihelion) corresponds toLaws oftheta=0, while the maximum rPlanetary(aphelion) corresponds toMotiontheta=180. In the figure thesedefinitions are switched. Theequation is in the standardform used in the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.Unit 1Figs.13.6 and 13.7 have theMechanics:foci of the ellipses in the wrongChapter 13place. The eccentricity of theseGravitation:ellipses is about 0.7, not aboutSection 13.50.5 as shown. Fig 13.20 shows	Gravitation:	Equation 13.10. In the		in content
Kepler's(perihelion) corresponds toLaws oftheta=0, while the maximum rPlanetary(aphelion) corresponds toMotiontheta=180. In the figure thesedefinitions are switched. Theequation is in the standardform used in the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.Unit 1Figs.13.6 and 13.7 have theMechanics:foci of the ellipses in the wrongChapter 13place. The eccentricity of theseGravitation:ellipses is about 0.7, not aboutSection 13.50.5 as shown. Fig 13.20 shows	Section 13.5	equation the minimum r		
Laws oftheta=0, while the maximum rPlanetary(aphelion) corresponds toMotiontheta=180. In the figure thesedefinitions are switched. Theequation is in the standardform used in the field, and so itis the figure that should becorrected. The angle thetashould be identified on the left(not on the right), as the anglefrom the semi-major axis atperihelion.Unit 1Figs.13.6 and 13.7 have theMechanics:Chapter 13place. The eccentricity of theseGravitation:ellipses is about 0.7, not aboutSection 13.50.5 as shown. Fig 13.20 shows	Kepler's	(perihelion) corresponds to		
Planetary Motion(aphelion) corresponds to theta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have the foci of the ellipses in the wrong Chapter 13Figure 13.20 will be updated.Other factual inaccuracy in content	Laws of	theta=0, while the maximum r		
Motiontheta=180. In the figure these definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Here Figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have the foci of the ellipses in the wrong Chapter 13Figure. The eccentricity of these Gravitation:Other factual inaccuracy in content	Planetary	(aphelion) corresponds to		
definitions are switched. The equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Her Figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs. 36 and 13.7 have the should be identified on the wrong Chapter 13Figure 13.20 will be updated.Other factual	Motion	theta=180. In the figure these		
equation is in the standard form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion		definitions are switched. The		
form used in the field, and so it is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.Figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the perihelion.Figure 13.20 will be updated.Other factual inaccuracy in content		equation is in the standard		
 is the figure that should be corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion. Unit 1 Figs.13.6 and 13.7 have the Mechanics: foci of the ellipses in the wrong Chapter 13 place. The eccentricity of these Gravitation: ellipses is about 0.7, not about Section 13.5 0.5 as shown. Fig 13.20 shows 		form used in the field, and so it		
corrected. The angle theta should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion.figure 13.20 will be updated.Unit 1Figs.13.6 and 13.7 have the Mechanics: Gravitation:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual		is the figure that should be		
should be identified on the left (not on the right), as the angle from the semi-major axis at perihelion		corrected. The angle theta		
(not on the right), as the angle from the semi-major axis at perihelion.(not on the right), as the angle from the semi-major axis at perihelion.Unit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.Other factual inaccuracy in contentUnit 1Figs.13.6 and 13.7 have the foci of the ellipses in the wrong place. The eccentricity of these Gravitation:Figure 13.20 will be updated.Other factual inaccuracy in content		should be identified on the left		
from the semi-major axis at perihelion.Figure 13.20 will be updated.OtherUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.OtherMechanics:foci of the ellipses in the wrong place. The eccentricity of these Gravitation:Figure 13.20 will be updated.OtherGravitation:ellipses is about 0.7, not about Section 13.50.5 as shown. Fig 13.20 showsin content		(not on the right), as the angle		
perihelion.Figure 13.20 will be updated.OtherUnit 1Figs.13.6 and 13.7 have the Mechanics:Figure 13.20 will be updated.OtherMechanics:foci of the ellipses in the wrong place. The eccentricity of these Gravitation:factual inaccuracy in contentGravitation:ellipses is about 0.7, not about Section 13.50.5 as shown. Fig 13.20 shows		from the semi-major axis at		
Unit 1Figs.13.6 and 13.7 have theFigure 13.20 will be updated.OtherMechanics:foci of the ellipses in the wrongfactualChapter 13place. The eccentricity of theseinaccuracyGravitation:ellipses is about 0.7, not aboutin contentSection 13.50.5 as shown. Fig 13.20 showsinaccuracy		perihelion.	5. 40.00	
Mechanics:foci of the ellipses in the wrongfactualChapter 13place. The eccentricity of theseinaccuracyGravitation:ellipses is about 0.7, not aboutin contentSection 13.50.5 as shown. Fig 13.20 showsin content	Unit 1	Figs.13.6 and 13.7 have the	Figure 13.20 will be updated.	Other
Chapter 13place. The eccentricity of theseInaccuracyGravitation:ellipses is about 0.7, not aboutin contentSection 13.50.5 as shown. Fig 13.20 showsin content	Wechanics:	Toci of the ellipses in the wrong		Tactual
Section 13.5 0.5 as shown. Fig 13.20 shows	Chapter 13	place. The eccentricity of these		inaccuracy
Secuon 13.5 I 0.5 as shown. Fig 13.20 shows I		empses is about 0.7, not about		in content
Kenler's a singular arbit (zero	Section 13.5	0.5 as shown. Fig 13.20 shows		
Laws of accontricity) but shows the sup	Repier S	a circular orbit (2010		
far from the center! It would	Laws UI	far from the center! It would		

Planetary	be better to have figures that		
Motion	are geometrically correct.		-
Unit 1	In the section about Black	Reivse "Roemer" to "Rømer"	Туро
Mechanics:	Holes, the name of the Danish	and "Pierre Simon" to "Pierre-	
Chapter 13	astronomer should be spelled	Simon".	
Gravitation:	Ole Rømer, not the changed		
Section 13.7	last name spelling Roemer. The		
Einstein's	first name of Pierre-Simon		
Theory of	Laplace needs a hyphen.		
Gravity			_
Unit 1	In the first sentence, there	Our reviewers accepted this	Туро
Mechanics:	should be a "to" between	change.	
Chapter 13	"able" and "see". Picture		
Gravitation:	attached shows annotation in		
Section 13.7	red for my reference.		
Einstein's			
Theory of			
Gravity			
Unit 1	In many of the problems in	Our reviewers accepted this	Туро
Mechanics:	Chapter 14, the first part of a	change.	
Chapter 14	multi-part question does not		
Fluid	have the '(a)' before the first		
Mechanics	question.		
Unit 1	Customer Support submitting	This will be updated to link to	Other
Mechanics:	errata, Case # 41686	lable 14.2.	factual
Chapter 14			inaccuracy
Fluid	Specifically, one of the		in content
Mechanics:	example problems, Example		
Section 14.1	14.1, makes reference to a		
Fluids,	table that has densities of		
Density, and	water as table 14.1, when		
Pressure	table 14-2 is the table which		
	has water densities.		
Unit 1	In the final equation and	Revise "p"s to "p" (rho symbol).	Incorrect
Wechanics:	sentence, the variable for the		answer,
Chapter 14	aensity \rho got mixed up with		calculation,
	a small p.		or solution
iviecnanics:			
Section 14.1			
EL 1 1			
Fluids,			
Fluids, Density, and			

Unit 1	The "g" of gravity is missing in	Thank you for the feedback!	Туро
Mechanics:	Specific gravity formula.	This error has already been	
Chapter 14		corrected, and appears	
Fluid		correctly in the webview. This	
Mechanics:		change will be reflected in the	
Section 14.1		PDF on the next revision cycle.	
Fluids,			
Density, and			
Pressure			
Unit 1	The figure reference after the	Our reviewers accepted this	Other
Mechanics:	second equation, "Figure	change.	factual
Chapter 14	14.28" should link to "Figure	_	inaccuracy
Fluid	14.27".		in content
Mechanics:			
Section 14.5			
Fluid			
Dynamics			
Unit 1	I write because I may have	This figure will be updated.	Туро
Mechanics:	found a typo. On page 719 of		
Chapter 14	University Physics Volume 1 in		
Fluid	the caption for Figure 14.26,		
Mechanics:	the second version of the		
Section 14.5	equation for Q appears to read		
Fluid	dv/dt rather than dV/dt. It		
Dynamics	looks like a lower case v rather		
,	than a capital V. Since both		
	velocity and volume are in this		
	equation, this might lead to		
	some confusion.		
Unit 1	Table 14.4: The viscosity are all	Revise the heading to show	Other
Mechanics:	1000 times larger than they	these viscosity values are ×	factual
Chapter 14	should be. Maybe the unit in	10^-3.	inaccuracy
Fluid	the heading should be mPa*s,		in content
Dynamics:	instead of Pa*s.		
Section 14.7			
Viscosity			
and			
Turbulence			
Unit 1	The answer listed in the	Revise the answer to "12.3 N".	Incorrect
Mechanics:	textbook for Problem #111 is		answer,
Chapter 14	incorrect. If we use the densitv		, calculation,
Fluid	of sea water as 1030 kg/m^3.		or solution
Mechanics:	as is listed in the book, the		
	answer should be 12.3 N.		

Additional			
Problems			Others
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.1 Simple Harmonic Motion	and the phase shift in Figure 15.8 goes in the wrong direction. Adding phi should move the curve by phi to the left, not to the right. As drawn, figure 15.8b is cos(theta - phi).	This figure will be updated.	Other factual inaccuracy in content
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.1 Simple Harmonic Motion	The formula cos(theta + phi) is said to represent a cosine function shifted to the right by phi, when in fact, adding a positive constant to the argument of any function shifts the graph to the left. In particular, the representation in Figure 15.8 would be correct if it were labeled as cos(theta - phi) for a positive phi, but this would change all of the formulae in the chapter. So, it might be best to redraw the figure and make sure that all references to the phase constant refer to left shifts rather than right ones.	The figure will be updated. Also revise the figure caption to change "right" to "left".	Other factual inaccuracy in content
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.1 Simple Harmonic Motion	After Fig. 15.8, in the v(t) and a(t) equation row, the middle equation has a \varphi instead of a \phi. In the paragraph after the a(t) equation, a space is needed after the first 'position'. Equations 15.3 - 15. 8 should be aligned at the equation sign. The horizontal lines between the equation numbers are 'weird'.	Replace the " ϕ " symbol with " ω " in the equation below Figure 15.8. Add a space after the word "position" on the following page. Cannot fix the equation alignment due to technical hindrances.	Туро
Unit 2 Waves and Acoustics:	Problem #31: "By how much leeway" should be "How much leeway".	Revise to "How much leeway"	Туро

Chapter 15			
Oscillations:			
Section 15.1			
Simple			
Harmonic			
Motion			
Unit 2	The answers for part (b) and	Revise the answers to part (b)	Incorrect
Waves and	(c) to Problem #37 in the	to "44.3 cm" and part (c) to	answer,
Acoustics:	textbook and the instructor's	"65.0 cm".	calculation,
Chapter 15	solution guides result from		or solution
Oscillations:	neglecting the change in		
Section 15.2	gravitational potential energy		
Energy in	while the rope stretches.		
Simple	Another person already		
Harmonic	reported these errors, but I		
Motion	obtained a different numerical		
	answer than he or she did,		
	though we used the same		
	method to solve the problem.		
Unit 2	I believe that the solution	Revise to "16.5 cm".	Incorrect
Waves and	posted for problem 15.37 in		answer,
Acoustics:	University Physics Vol.1 is		calculation,
Chapter 15	incorrect. If the final stretch of		or solution
Oscillations:	the rope is x then the climber		
Section 15.2	fell a total of (x+2) meters and		
Energy in	conservation of energy would		
Simple	mean mg(x+2) = $(1/2)k x^2$.		
Harmonic	This gives $x = 0.165$ meters.		
Motion			
Unit 2	Problem #40: I suggest to	This figure will be updated.	General/ped
Waves and	update the sketch. If the		agogical
Acoustics:	linkage moves further to the		suggestion
Chapter 15	right, it will get caught in the		or question
Oscillations:	blade guide. In this position,		
Section 15.3	the saw blade need to be		
Comparing	extended to the left.		
Simple	Also, the question asks " saw		
Harmonic	blade as it moved up and		
Motion and	down". For this sketch, it		
Circular	should state " left and right".		
Motion			
Unit 2	There is some inconsistency	The figure will be revised to	Incorrect
Waves and	about the quantity "L" in this	use "H" instead of "L". Before	answer,
Acoustics:	chapter:	the "Significance" heading in	

Chapter 15 Oscillations: Section 15.4 Pendulums	Equation (15.21) for the period of a physical pendulum defines the quantity L as the distance between the CM of a body, and the axis of rotation. So for a uniform rod of length H, L = H/2. In example 15.4 (Reducing the Swaying of a Skyscraper), L is taken to be the full length of the physical pendulum, but this gives in incorrect result when applying equation (15.21) directly. The "L" to be inserted here should be half the length of the beam, giving this expression for the period:	the solution, add the following text: This length L is from the center of mass to the axis of rotation, which is half the length of the pendulum. Therefore the length H of the pendulum is: H = 2L = 5.96 m.	calculation, or solution
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.4 Pendulums	T = 2*pi*sqrt(2*L/(3*g)) My solution to the problem is in the attached file.	This example and figure will be updated.	Incorrect answer, calculation, or solution
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.5 Damped Oscillations	Problem #51: Since the energy of a simple harmonic oscillator is proportional to the square of the amplitude of oscillation, then if the fractional decrease of the amplitude over a period is 3%, the energy decreases by roughly 2 * 3%, not 0.03*0.03 = 9%, which is the solution given in the back of the book and in the ISG.	Revise to "6%".	Incorrect answer, calculation, or solution
Unit 2 Waves and Acoustics: Chapter 15 Oscillations:	The definition given for the "quality" of an oscillating system, Q is 1/ the typical definition (see	In the equation "Q = $\Delta \omega / \omega_0$ ", switch the numerator and denominator so it is "Q = $\omega_0 / \Delta \omega$ ".	Other factual inaccuracy in content

Section 15.6	https://ww3.haverford.edu/ph		
Forced	ysics-astro/songs/qsong.htm).		
Oscillations			
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.6 Forced Oscillations	The formula for the amplitude of the driven damped oscillator (eq 15.29) is incorrect. It should be m squared inside the square root in the denominator.	This is correct in webview.	Incorrect answer, calculation, or solution
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.6 Forced Oscillations	The text about driven oscillation after Equation (15.29) is incorrect. The maximum amplitude DOES NOT occur at the natural frequency of the system. This can be seen by maximizing A in Equation (15.29). Taking the derivative of A with respect to the driving angular frequency omega and solving for the angular frequency for which the derivative is zero gives a resonant frequency of omega_res = omega_0 sqrt(1 - $2(b/(2m))^2)$, where omega_0 is the natural angular frequency and the other parameters are as defined in Section 15.6. This resonant frequency is a little less than omega_0, and it approaches omega_0 in the limit of small damping constant b. The maximum amplitude (at omega_res) is A_max = F_0 / (b sqrt(omega_0^2 -	Revise "the natural angular frequency of the system of the mass and spring" to "the angular frequency of the driving force."	Other factual inaccuracy in content

	(b/(2m))^2)).		
	This is NOT the value given in the text. In the limit of small b, A_max approaches the value given in the text. For a more detailed		
	examination of this system see Stephen T. Thornton and Jerry B. Marion (2004). Classical Dynamics of Particles and Systems, Fifth Edition (Brooks/Cole, Belmont, CA), Section 3.6, pp. 117123.		
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Section 15.6 Forced Oscillations	Understanding of the physics behind the Tacoma-Narrows bridge collapse has recently been improved. It is no longer thought to be a case of resonance, so another example should be used in its place. For more information, see https://www.aps.org/publicati ons/apsnews/201611/physicsh istory.cfm	This example and figure will be updated to focus on the London Millennium Footbridge.	Other factual inaccuracy in content
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Additional Problems	Problem #60: The numerical value for x should be 4.00 cm instead of 4.0 cm, if 4.00 cm is used in the solution. In general, I would like that the whole book takes more attention to significant figures.	Revise to "4.00 cm".	Туро
Unit 2 Waves and Acoustics: Chapter 15 Oscillations: Additional Problems	Problem #56: Suppose you attach an object with mass m to a vertical spring originally at rest, and let it bounce up and down. You release the object from rest at the spring's original rest length, the length of the spring in equilibrium, without the mass attached. The amplitude of the motion is	Revise "M/m" to "N/m".	Туро

	the distance between the		
	equilibrium position of the		
	spring without the mass		
	attached and the equilibrium		
	position of the spring with the		
	mass attached. (a) Show that		
	the spring exerts an upward		
	force of 2.00mg on the object		
	at its lowest point. (b) If the		
	spring has a force constant of		
	10.0 N/m, is hung horizontally,		
	and the position of the free		
	end of the spring is marked as		
	y=0.00m , where is the new		
	equilibrium position if a 0.25-		
	kg-mass object is hung from		
	the spring? (c) If the spring has		
	a force constant of 10.0 M/m		
	and a 0.25-kg-mass object is		
	set in motion as described, find		
	the amplitude of the		
	oscillations. (d) Find the		
	maximum velocity.		
	Under question C, it lists the		
	force constant as 10.0 M/m.		
	The unit should be 10.0 N/m		
Unit 2	The wavelength, lambda,	This figure will be updated.	Other
Waves and	indicated in Figure 16.5 is		factual
Acoustics:	incorrect. The left arrow of the		inaccuracy
Chapter 16	indicated region could be		in content
Waves:	moved one grid space to the		
Section 16.1	right, or the right arrow one		
Traveling	grid space to the left, to		
Waves	capture exactly one cycle.		
	Optionally, the dashed lines		
	showing the wavelength could		
	extend from diagram (g) all the		
	way up to diagram (b), rather		
	than stopping at (d).		
Unit 2	A function is described as	Revise "By_2(x, y)" to "By_2(x,	Туро
Waves and	y_2(x,y) rather than y_2(x,t).	t)".	
Acoustics:			

Chapter 16	Current text: "are solutions		
Waves:	to the linear wave equation,		
Section 16.2	then $Ay_1(x,t) + By_2(x,y)$,		
Mathematic	where A and B are		
s of Waves	constants"		
	With the typo fixed: "are solutions to the linear wave		
	equation, then Ay_1(x,t) + By_2(x,t), where A and B are		
	constants		-
Unit 2	In The Linear Wave Equation	Revise "d^2 x" to "dx^2" in the	Туро
Waves and	part (and Example 16.4),	denominator. In Example 16.4	
Acoustics:	several equations of the	step 3, make the same change	
Chapter 16	second derivative in the	and also revise "d^2 t" to	
Waves:	Leibnitz notation has the "^2"	"dt^2" in the denominator.	
Section 16.2	after the \delta in the		
Mathematic	denominator instead of the		
s of waves	Variable X or t.		T
Unit 2	Ch. 16 Problem 51 part e) is	Revise phase shift to initial	туро
vvaves and	asking to find the phase. It	phase shift .	
ACOUSTICS:	should say initial phase .		
Chapter 16			
VVaves:			
Mathematic			
S OI Waves	Submitted by Customer	Povico "amplitudo docroasos	Othor
Mayos and	Support on bobalf of usor Case	proportional" to "intensity	factual
		decreases propertional"	inaccuracy
Chapter 16	36313		in contont
Wayes:	The last naragraph of 16.4 says		meontent
Section 16.4	"In the case of the two-		
Energy and	dimensional circular wave the		
Power of a	wave moves out increasing		
Wave	the circumference of the wave		
	as the radius of the circle		
	increases. If you toss a pebble		
	in a pond, the surface ripple		
	moves out as a circular wave		
	As the ripple moves away from		
	the source, the amplitude		
	decreases. The energy of the		
	wave spreads around a larger		

	circumference and the amplitude decreases proportional to 1/r, which is also the same in the case of a spherical wave, since intensity is proportional to the amplitude squared." This is not true. For a circular wave, *intensity* decreases proportionally to 1/r, not amplitude. This is also not the same falloff with r as the case for a spherical wave, because the dimensionality is different		
Unit 2 Waves and Acoustics: Chapter 16 Waves: Section 16.4 Energy and Power of a Wave	Problem #75: Equation of wave is given, mass and tension in string are also given. From the tension and mass, we can calculate an omega that is different from the one in the statement. Therefore the problem does not work. Easy fix: replace 1170.2 by 74.54. More difficult fix: remove either the tension or the linear density from the problem statement.	Revise "0.40" to "15.7".	Incorrect answer, calculation, or solution
Unit 2 Waves and Acoustics: Chapter 16 Waves: Section 16.4 Energy and Power of a Wave	In the derivation for the average power transported by a traveling wave, I think that the expression for U_lambda when dU is being integrated should be the integral of sin^2(kx) from 0 to lambda (not cos^2(kx)) because what is being integrated is the position expressed as Asin(kx- wt+phi). Luckily, the result of the integral does not change, it's still lambda/2 and the subsequent steps seem fine.	Revise "cos" to "sin".	Other factual inaccuracy in content
Unit 2 Waves and	In the paragraph just before Figure 16.18, a sentence states	Revise the sentence starting "Both the incident" to "Both	Туро

Acoustics: Chapter 16 Waves: Section 16.5 Interference of Waves	"Both the incident and the reflected waves have amplitudes less than the amplitude of the incident wave." We believe this should be "Both the TRANSMITTED and the reflected waves have amplitudes less than the amplitude of the incident wave.	the transmitted and the reflected waves have amplitudes less than the amplitude of the incident wave."	
Unit 2 Waves and Acoustics: Chapter 16 Waves: Section 16.6 Standing Waves and Resonance	The data given in problem #105 do not match the data used in the key. The key uses mass density 0.02 kg/m, but the problem gives it as 0.2 kg/m. This error is in the student solutions manual and in the answers given in the textbook itself.	Revise "0.2" to "0.02" in the problem.	Incorrect answer, calculation, or solution
Unit 2 Waves and Acoustics: Chapter 16 Waves: Section 16.6 Standing Waves and Resonance	In the description under Figure 16.25 "surface of the milk of oscillate" should be "surface of the milk to oscillate"	In the caption, revise "milk of" to "milk to".	Туро
Unit 2 Waves and Acoustics: Chapter 16 Waves: Section 16.6 Standing Waves and Resonance	In Ch. 16 Problem #105 the air temperature is given and it is assumed that the students would know what would be the speed of sound in air at that temperature. However the dependence of speed of sound on air temperature is covered in the next chapter (ch. 17). It would be better either to specify directly how much is the speed of sound or move this problem to ch. 17.	Revise the second to last sentence in the question stem to "The speed of sound at the current temperature T = 20°C is 343.00 m/s."	General/ped agogical suggestion or question
Unit 2 Waves and	ch. 17 problem 43 has double commas in the last sentence.	Our reviewers accepted this change.	Туро

Acoustics:			
Chapter 17			
Sound:			
Section 17.1			
Sound			
Waves			
Unit 2	The data used in the key bear	Revise "90.00" to "95.00",	Incorrect
Waves and	no relation to the data given in	"1.00" to "0.10", and "3.00" to	answer,
Acoustics:	problem #55. The textbook	"0.15".	calculation,
Chapter 17	says the temperature is 90 F,		or solution
Sound:	but the key uses 95 F. The		
Section 17.2	textbook gives the time delays		
Speed of	as 1.00 s and 3.00 s, but the		
Sound	key uses 0.10 s and 0.15 s,		
	respectively.		
Unit 2	M is described as the	Revise "molecular mass" to	Туро
Waves and	molecular mass. It should be	"molar mass".	
Acoustics:	described as the molar mass		
Chapter 17	(as it is later on during the		
Sound:	derivation of this equation in		
Section 17.2	the same section).		
Speed of			
Sound			
Unit 2	Good morning, I would like to	This figure will be updated.	Other
Waves and	bring to you attention figure		factual
Acoustics:	17.22 in section 17.4.		inaccuracy
Chapter 17	I believe that the figure labels		in content
Sound:	the first, second and third		
Section 17.4	overtones of a open-closed		
Normal	pipe incorrectly.		
Modes of a	In an open-closed pipe the first		
Standing	overtone's frequency is 3 times		
Sound Wave	the frequency of the		
	fundamental, so should be		
	labelled f3, Similarly the		
	second overtone should be f5,		
	and the third overtone should		
	be f7		
	NC 171		
	This is because asymmetric		
	This is because asymmetric systems resonate only in odd		
	This is because asymmetric systems resonate only in odd harmonics.		
	This is because asymmetric systems resonate only in odd harmonics. Thank you for your hard work,		
Unit 2	This is because asymmetric systems resonate only in odd harmonics. Thank you for your hard work, The particular image/caption	Delete from the caption,	General/ped

Acoustics:	problematic, because it implies	musical instruments since	suggestion
Chapter 17	that this particular African	prehistoric times."	or question
Sound:	culture has been unchanged		
Section 17.5	since prehistoric times. I		
Sources of	recommend keeping both the		
Musical	image and the caption, but		
Sound	separating them into two		
	figures:		
	 For the purposes of demonstrating resonance used in musical instruments since prehistoric times, I recommend showing actual archeological artifacts. I do appreciate the fact that this figure shows an example of a non-western instrument. I recommend keeping this particular image, but with a caption about the resonator gourds specifically (without implying that the culture it comes from has been unchanged since prehistoric 		
Unit 2	The description in the figure	In the captions for Figures	Τνρο
Unit 2 Waves and Acoustics: Chapter 17 Sound: Section 17.7 The Doppler Effect	The description in the figure legends for both figures of what the dotted and solid lines represent is backwards: the dotted lines show the position of the wavefronts at t=0 and the solid lines at t=T0. The description in the legends is also inconsistent with the text description. Problem areas in text and legends are highlighted in the attached screenshot. The figures themselves are correctly labeled and consistent with the text. The problem is with the legends.	In the captions for Figures 17.33 and 17.34, revise "solid" to "dotted" and "dotted" to "solid".	Туро

Unit 2 Waves and Acoustics: Chapter 17 Sound: Section 17.7 The Doppler Effect	Just below Equation 17.19, it says v_w is the speed of sound, but this should just be v. There is no v_w. It happens again after Table 17.4, as noted in Erratum 6111.	Revise "v_w" to "v".	Туро
Appendix A Units	In Table A1, some units in parentheses need a space after the unit name.	Our reviewers accepted this change.	Other
Appendix C Fundamenta I Constants	Update to revise the definitions of several fundamental physical constants that were adopted May 2019.	Revise as indicated.	General/ped agogical suggestion or question
Appendix D Astronomica I Data	The cell in the "Period of Revolution (d = days) (y = years)" column and the "Saturn" row currently reads "29.5 6", which I think it a typo and should actually read "29.5 y" (I think whoever made the table accidently hit the "6" key instead of the "y" key, as they're right next to each other on a qwerty keyboard). Case 54748	Our reviewers accepted this change.	Туро
Appendix D Astronomica l Data	In Tables B2 and D1 the period of revolution (days per year) give 365.25 and 365.26, respectively. Those values should be the same.	In Appendix D, revise "365.26 d" to "365.25 d".	Other
Appendix E Mathematic al Formulas	Mathematical formula. Number 16: derivative of tan-1 - It should be positive 1/((1+x)^2) instead of negative The derivative of cot-1 is negative	Delete the negative sign in the 16th derivative.	Туро
Appendix F Chemistry	Element 117, ununseptium, is now called Tennessine; Element 118, ununoctium, is now called Oganesson	This figure will be updated.	Other factual inaccuracy in content