Chemistry Atoms First Release Notes 2017

Publish Date: March 15, 2017

Revision Number: CAF-2016-001(03/17)-LC

Page Count Difference:

In the latest edition of *Chemistry: Atoms First,* there are 1355 pages compared to the 1361 pages in the last edition. This page count variation is due to errata revisions.

Errata:

Below is a table containing submitted errata, and the resolutions that OpenStax has provided for this latest text.

Issue	Resolution	Severity
Chapter 1: Essential Ideas;		
End of Chapter Exercises In		
Chapter 1, question 90,	Revise question 90 part (a) from "g/cm" to	
there is a typo. 0.97 g/cm	"g/cm^3" as follows: (a) What is the mass of 4.00	
should be 0.97 g/cm^3.	cm^3 of sodium, density = 0.97 g/cm^3?	Туро
Chapter 1.4: Essential Ideas,		
Section: Measurements		
Figure 1, showing the rulers		
is not representative of an		
actual ft/cm comparison. I'm		
not sure how the illusion		
was created, but the image		
clearly suggests that 1 ft is		
30 cm. True, it's close, but		
the error is compounded by		
the point of 90 cm such that		
the 3-ft mark should match		
up with about 91.5 cm, not		
90, which should be clearly		
visible. The problem is due		
to the fact that the 100 mark		
lines up with 40 cm, not		
39.36. That may not seem		
like much, but it is enough.		
Measurements are		
important in chemistry, and	Revise the ruler in Figure 1.23 to correctly show	
so why not do it right?	the alignment of centimeters and feet.	Minor
Chapter 1.4: Essential Ideas,	Revise the answer to exercise 43 as follows: 43.	
Section: Measurements, End	Visit this PhET density simulation and select	
of Chapter Exercises In	Mystery Blocks (c) Order the Mystery Blocks	Туро

section 1.4 Measurements, there is an error in part c of the solution for the last exercise on the page. The solution given is "(c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < C/green/ice (0.920 kg/L) < D/red/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)" This makes no sense, because C/green cannot be both 0.700 kg/L and 0.920 kg/L. I believe the 3rd and 4th blocks are both identified incorrectly, and that the correct solution should be "(c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < D/red/ice (0.920 kg/L) < E/purple/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)".	from least dense to most dense. Explain. Answer: (c) B/blue/apple (0.64 kg/L) < C/green/gasoline (0.700 kg/L) < D/red/ice (0.920 kg/L) < E/purple/diamond (3.53 kg/L) < A/yellow/gold (19.3 kg/L)	
	Revise the paragraph before Example 1.3 Rounding Numbers to say "less than" instead of "lesser than".	Туро
Chapter 1.6: Essential Ideas, Section: Mathematical Treatment of Measurement Results, End of Chapter Exercises Question 77c and 77f: there is a "t" where I believe you mean x (times): (c) the area of an 8.5 t 11- inch sheet of paper in cm2 (e) the estimated mass of the atmosphere, 5.6 t 1015 tons, to kilograms	In parts (c) and (d) of exercise 77, revise "t" to a multiplication symbol as follows: 77. Make the conversion indicated in each of the following: (c) the area of an 8.5 c 11-inch sheet of paper in cm2 (e) the estimated mass of the atmosphere, 5.6 x 1015 tons, to kilograms	Туро
Chapter 3: Electronic Structure and Periodic Properties of Elements; End	Revise "Question 5" to "the previous question" as follows: 36. Which of the subshells described in the previous question contain degenerate	Туро

of Chapter Exercises The	orbitals? How many degenerate orbitals are in	
phrase, "described in	each?	
Question 5," should be, "		
.described in Question 35."		
Chapter 3.4: Electronic		
Structure and Periodic		
Properties of Elements;		
Section 3.4: Electronic		
Structure of Atoms (Electron		
Configurations); Subsection:		
Electron Configurations and		
the Periodic Table The		
phrase, " are most easily		
lost or shared than the core	Revise the phrase "are most easily lost or	
electrons," should be, "	shared than the core electrons," to "are more	
are more easily lost or	easily lost or shared than the core electrons" in	
shared than the core	the first paragraph of Section Orbital Energies	
electrons."	and Atomic Structure.	Туро
		1940
Chapter 3.5: Electronic		
Structure and Periodic		
Properties of Elements,		
Section: Periodic Variations		
in Element Properties, End		
of Chapter Exercises In the		
solutions guide for Chapter 3		
problem 49 b; the answer		
given incorrectly lists the		
carbonate and ought to be	In the Solution Manual, revise the solution given	
the sulfate. See attached pic.	for exercise 49 part (b) as follows: (b) (NH4)2SO4	Туро
Chapter 4.1: Chemical		
Bonding and Molecular		
Geometry, Section: Ionic		
Bonding, Figure 4.3 figure	Revise exercise 71 as follows: 71. Outline the	
4.3, the labeling is wrong,	steps needed to determine the limiting reactant	
larger spheres are labeled	when 0.50 mol of Cr and 0.75 mol of H3PO4 react	
Na+, smaller spheres Cl-	according to the following chemical equation.	Туро
Chapter 4.6: Chemical		
Bonding and Molecular		
Geometry, Section:		
Molecular Structure and		
Polarity. The diagram for		
Chloromethane, as well as	Device everying 91 on following 91	
the corresponding wording	Revise exercise 81 as follows: 81 What is the	
in the text, are incorrect.	Cl- concentration in a 0.25-mL sample of normal	
The dipole moment arrows	serum that requires 1.46 mL of 8.25×10^{-4} M	
for the bonds are all pointing	Hg(NO3)2(aq) to reach the end point?	Minor

in the wrong direction. They should be pointing from the more positive element to the more negative element. The wording should state "All of the dipoles have an 'UPWARD' component"		
Chapter 4.6: Chemical Bonding and Molecular Geometry, Section: Molecular Structure and Polarity, Example 4.16 Example 4.16, revise The Lewis structure in the solution has a minor error. One of the oxygens is missing a couple of lone pairs of electrons.	Insert a "+" between Cl^-(aq) and Ag^+(aq) in question 12 part ii, as follows: ii. Na+(aq) + Cl-(aq) + Ag+(aq) + NO3-(aq)> AgCl(s) + Na+(aq) + NO3- (aq)	Туро
Chapter 4.6: Chemical Bonding and Molecular Geometry; Section 4.6: Molecular Structure and Polarity; Subsection: Molecular Polarity and Dipole Moment. There is no C-S dipole. Change the diagram which shows a dipole.	Replace the phrase "from ores as" with "from ores such as" in question 4, as follows: 4. Silver is often extracted from ores such as K[Ag(CN)2] and	Туро
Chapter 4.6: Chemical Bonding and Molecular Geometry; Section 4.6: Molecular Structure and Polarity; Subsection: Molecular Polarity and Dipole Moment The phrase, "Thus, the two bonds do not have of the same bond dipole moment and," should be, "Thus, the two bonds do not have the same bond dipole moment and	Revise the instructions for exercises 12-15 as follows: "Use the following equations to answer the next four questions:"	Minor

Chapter 5.2: Advanced		
Theories of Bonding,		
Section: Hybrid Atomic		
Orbitals The description of		
the orbitals (see Figure		
legend, in terms of color, in		
Fig. 5.8 is confusing/wrong.		
The p-orbital is not 'red', nor		
are the hybrid orbitals		
'purple'. I know that we		
went through various		
iterations of these colorings,		
but the figure legends must		
of course match the figures.		
The same discrepancy		
occurs in other figures in this		
chapter, e.g. Figs. 5.10 and	In Figures 5.8, 5.10, and 5.15, revise the captions	
5.15.	to say "yellow" instead of "purple".	Major
Chapter 5.2: Advanced		
Theories of Bonding,		
Section: Hybrid Atomic		
Orbitals, Figure 5.10 Figure		
5.10 showing the		
hybridization of orbitals to		
form sp2 orbitals. The figure		
shows the sp2 orbitals		
arranged 90 degrees from		
each other, rather than 120		
degrees in a plane. This is	Add a label to Figure 5.10 to mark the 120	
very confusing for students!	degrees between the sp2 orbitals.	Major
Chapter 7: Stoichiometry of		
Chemical Reactions; Answer		
Key, Question 71 In the		
answer for question 71 in		
chapter 7, the formula	Revise the formula "H2PO4" to "H3PO4" in the	
H_2PO_4 should be	answer to question 71, as follows: 71. The	
H_3PO_4.	conversion needed is mol Cr> mol H3PO4	Туро
Chapter 7: Stoichiometry of		
Chemical Reactions; End of		
Chapter Exercises In	Replace the phrase, "is be required to titrate,"	
question 78 of chapter 7,	with "is required to titrate" in question 78 as	
replace the phrase, "is be	follows: 78. What volume of 0.0105-M HBr	
required to titrate," with "is	solution is required to titrate 125 mL of a 0.0100-	
required to titrate."	M Ca(OH)2 solution?	Туро
Chapter 7: Stoichiometry of	Revise the phrase "in hot water of 60 °C is 164 g	11.2
Chemical Reactions; End of	L" to "in hot water of 60 °C is 164 g/L" in question	Typo
	L to influe water of ou C is 104 g/L in question	iypu

Chapter Exercises In question 86 of chapter 7, the phrase, "in hot water of 60 °C is 164 g L" should be, "in hot water of 60 °C is 164 g/L."	86, as follows: 86The solubility of NaHCO3 in hot water of 60 degrees C is 164 g/L	
Chapter 7: Stoichiometry of Chemical Reactions; End of Chapter Exercises The question, "What are the empirical and molecular formulas of the compound." should have a question mark instead of a period.	Add a question mark at the end of question 85.	Туро
Chapter 7.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises Chapter 7 Problem 7c page 1262: The answer given in the back of the book is: Al2O3(GAS) it should be a (SOLID).	Revise the answer given for part (d) of exercise 7 as follows: 7. Colorful fireworks often involve the decomposition of barium nitrate and potassium chlorate and the reaction of the metals magnesium, aluminum, and iron with oxygen Answer: (d)4Al(s) + 3O2(g)> 2Al2O3(s)	Туро
Chapter 7.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises End of chapter exercises - Chapter 7 # 11 part a product listed as BaC2O2 (s); should be BaC2O4 (s)	Revise the formula given in part (a) of exercise 11 as follows: 11. From the balanced molecular equations, write the complete ionic and net ionic equations for the following: (a) K2C2O4(aq) + Ba(OH)2(aq)> 2KOH(aq) + BaC2O4(s)	Туро
Chapter 7.1: Stoichiometry of Chemical Reactions, Section: Writing and Balancing Chemical Equations, End of Chapter Exercises Chapter 7 Problem 3 f The (NH4)2Cr52O7 ought to read (NH4)2Cr2O7. I think that the extra 5 is a simple typo	Revise "(NH4)2Cr52O7" to "(NH4)2Cr2O7" in the soltuion to exercise 3 part (f).	Туро
Chapter 7.1: Stoichiometry of Chemical Reactions;	In the table that appears just before Example 7.1 Balancing Chemical Equations, revise "2 x 2 = 2"	Туро

Section 7.1: Writing and Balancing Chemical Equations; Subsection: Balancing Equations. In the table that appears just before Example 7.1, 2 times 2 should equal 4 not 2.	to "2 x 2 = 4".	
Chapter 7.1: Stoichiometry of Chemical Reactions; Section: Writing and Balancing Chemical Equations, first figure In the caption for Figure 7.2, change "carbon dioxide in water" to "carbon dioxide and water."	Revise "carbon dioxide in water" to "carbon dioxide and water" in the caption for the first figure in section 7.1 Writing and Balancing Chemical Equations as follows: The reaction between methane and oxygen to yield carbon dioxide and water (shown at bottom) may be represented by a chemical equation using formulas (top).	Туро
Chapter 7.2: Stoichiometry of Chemical Reactions Section: Classifying Chemical Reactions In Table 7.1, the ion 'chromate' is given the formula CrO32-, rather than CrO42	Fixed.	Minor
Chapter 7.2: Stoichiometry of Chemical Reactions; Section 7.2: Classifying Chemical Reactions; Subsection: Balancing Redox Reactions via the Half- Reaction Method; Example 7.7 In Step 4 for the Solution to Example 7.7, the last equation should read, "Cr_2O_7^2- + 14H^+ yields 2Cr^3+ + 7H_2O."	Add "14H+" to the last equation in the solution to Example 4.7 Balancing Redox Reactions in Acidic Solution as follows: Cr2O72- + 14H+> 2Cr3+ + 7H2O	Туро
Chapter 7.2: Stoichiometry of Chemical Reactions; Section 7.2: Classifying Chemical Reactions; Subsection: Oxidation- Reduction Reactions; Example 7.5 In the solution to Example 7.5, The equation, "charge on SO_3^2- = -2 = (3 times -1) + (1 times x)" should read,	Revise "(3 x -1)" to "(3 x -2)" in the solution to Example 4.5 Assigning Oxidation Numbers part (b) as follows: (b) charge on SO32- = -2 = (3 x -2) + (1 x X)	Туро

"charge on SO_3^2- = -2 = (3		
times -2) + (1 times x)." Chapter 7.2: Stoichiometry of Chemical Reactions; Section 7.2: Classifying Chemical Reactions; Subsection: Precipitation Reactions and Solubility Rules; Table 7.1 In Table 7.1, the charge for the sulfate ion should 2- not just Chapter 7.4: Stoichiometry of Chemical Reactions, Section: Reaction Yields, End of Chapter Exercises Chapter 7 problem 69: In the product side, ether is missing its Oxygen. Reads - 2C2H5OH +	Revise the charge for the sulfate ion in Table 7.1 Solubilities of Common Ionic Compounds in Water from " - " to "2-"	Туро
H2SO4> (C2H5)2 + H2SO4*H2O (C2H2)2 should be (C2H5)2	Revise the equation given in exercise 69 as follows: 69. Outline the steps needed to solve the following problem, then do the calculations 2C2H5OH + H2SO4> (C2H5)2O + H2SO4 x H2O	Minor
Chapter 7.4: Stoichiometry of Chemical Reactions, Section: Reaction Yields, Example 7.16 Combustion Analysis Avogadro's number on flowcart should be "stoichiometric factor"	Revise the flowchart in Example 7.16 Combustion Analysis to read "stoichiometric factor" instead of "Avogadro's number".	Туро
Chapter 7.4: Stoichiometry of Chemical Reactions, Section: Reaction Yields, Example 7.16 Combustion Analysis misleading to have y as the subscript in the formula CxHy(s) and also as the coefficient for H2O	In the solution to Example 7.16 Combustion Analysis, change "y" to "y/2" in front of H2O, as follows: CxHy(s) + excess O2(g)> xCO2 + (y/2)H2O(g)	Туро
Chapter 7.4: Stoichiometry of Chemical Reactions; Section 7.4: Reaction Yields; Subsection: Limiting Reactant; Example 7.12 In the solution to Example 7.12, for the equation for mol N_2, the denominator of the fraction should read "28.02 g N_2."	Revise "28.09 g N2" to "28.02 g N2" in the second equation in the solution to Example 4.12 Identifying the Limiting Reactant as follows: mol N2 = 1.50 g N2 x (1 mol N2/28.02 g N2) = 0.0535 mol N2	Туро

Chapter 7.4: Stoichiometry of Chemical Reactions; Section 7.4: Reaction Yields; Subsection: Limiting Reactant; Example 7.13 In the Check Your Learning for Example 7.13 change the phrase, "of the Freon" to "of the Freon gas."	Revise "the Freon" to "the gas Freon" in the Check Your Learning question for Example 7.13 Calculation of Percent Yield as follows: What is the percent yield of a reaction that produces 12.5 g of the gas Freon CF2Cl2 from 32.9 g of CCl4 and excess HF?	Туро
Chapter 7.5: Stoichiometry of Chemical Reactions, Section: Quantitative Chemical Analysis, End of Chapter Exercises Ironically - the newer edition of the Chemistry book (orange) contains an error; whereas, the older edition does not. On p.221 of the latest edition, chapter 7 problem 81: The concentration given "() 5.25 × 10?4 M Hg(NO3)2(aq) to reach the end point?" Ought to read " () 8.25 ()" in order to yield the computed value found in the back of the book. In the earlier edition, this was correct. Furthermore, in the solutions guide - the problem interchanges between these two		
numerical values (photo attached.)	In exercise 81, revise "5.25" to "8.25".	Minor
Chapter 7.5: Stoichiometry of Chemical Reactions, Section: Quantitative Chemical Analysis, End of Chapter Exercises p. 222 Chapter 7 Problem 83. The question talks about GaBr2 - however, it ought to read GaBr3.	In exercise 83, revise "GaBr2" to "GaBr3" throughout.	Туро
Chapter 7.5: Stoichiometry of Chemical Reactions, Section: Quantitative	Revise the Check Your Learning for Example 7.14 Titration Analysis as follows: "A 20.00-mL sample of aqueous oxalic acid, H2C2O4, was titrated with	

Chemical Analysis, Example 7.14 Perhaps the formula for Potassium permanganate should read KMnO4 instead of MnO4	a 0.09113-M solution of potassium permanganate, KMnO4."	
Chapter 7.5: Stoichiometry of Chemical Reactions; Section 7.5: Quantitative Chemical Analysis; Subsection: Titration; Example 7.14 In the Solution to Example 7.14, replace the phrase, "since the amounts of reactants are provided and requested are" with "since the amounts of reactants provided and requested are."	Revise "since the amounts of reactants are provided and requested are" to "since the amounts of reactants provided and requested are" in the Solution to Example 7.14 Titration Analysis as follows: As for all reaction stoichiometry calculations since the amounts of reactants provided and requested are expressed as solution concentrations.	Туро
Chapter 8: Gases, End of Chapter Exercises, 11 p. 502 Chapter 8 Problem 11. The question stem reads: "() pressure at sea level 29.97 in., ()" Ought to read: "() pressure at sea level 29.97 in. Hg, ()" Basically missing the "Hg"	In exercise 11, revise "29.97 in." to "29.97 in. Hg".	Туро
Chapter 8: Gases, End of Chapter 8: Gases, 25 Chapter 8 Problem 25 (2016 ed). Using the figure mentioned in the problem, one cannot (at the given temperature) get the answer that is showing in the back of the book. Either change the temperature to 191K or adjust the volume of the answer.		Туро
Chapter 8: Gases, End of Chapter Exercises, 69	Revise part a of exercise 69 to give temperature "875 K".	Minor

Missing a "K" (2016 ed)		
Chapter 8 Problem 69 A.		
Reads "875 degree" should		
read "875 K" (without the		
degree and Kelvin added.)		
Chapter 8: Gases; Answer		
Key The answer to question		
105 part (b) in chapter 8		
currently reads, "the ideal		
gas approximation breaks		
down and is significantly		
different from the pressure		
calculated by the van der	Revise the answer to part (b) of question 105 to	
Waals equation," but it	use "ideal gas equation" instead of "van der	
should read, "the ideal gas	Waals equation" as follows: (b) When real gases	
approximation breaks down	are at low pressures and high temperatures the	
and is significantly different	ideal gas approximation breaks down and is	
from the pressure calculated	significantly different from the pressure	
by the ideal gas equation"	calculated by the ideal gas equation.	Туро
Chapter 8.1: Gases, Section:		
Gas Pressure Chemistry text:		
1) P464 fig 8.5 - diagram on		
right has incorrect depiction	In Figure 8.5 on manometers, revise the label of h	
of "h" submitted via	on the rightmost manometer to appear above	
ZenDesk	the black line.	Minor
Chapter 8.2: Gases, Section:		
Relating Pressure, Volume,		
Amount, and Temperature:		
The Ideal Gas Law Chapter 8		
Figure 5 has the wrong units	Device the graph in Figure 0.12 to have write of	
on the vertical axis. They	Revise the graph in Figure 8.13 to have units of	
should be psi^-1, not psi	psi^-1.	Minor
Chapter 8.2: Gases, Section:		
Relating Pressure, Volume,		
Amount, and Temperature:		
The Ideal Gas Law Chapter 8		
Figure 6, graph on right, axes		
are incorrectly labeled. This		
is a graph of 1/P vs. V, not		
Volume vs. Pressure. But		
there is probably a simpler		
solution. The graphs in this		
. .		
figure are a duplication of		
figure are a duplication of those in Figure 5, and the	Revise part (b) of Figure 8.14 showing the	
figure are a duplication of	Revise part (b) of Figure 8.14 showing the relationship between pressure and volume to show the graph of 1/P vs. V.	Major

refer to Figure 5.		
Chapter 8.2: Gases; Section 8.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Pressure: Boyle's Law In Example 8.8, the phrase, "Using P_1 and V_1 as the known values 0.933 atm and 2.40 mL, P_2 as the volume at which the pressure is unknown and V_2 as the unknown volume," should read, "Using P_1 and V_1 as the known values 13.0 psi and 15.0 mL, V_2 as the volume at which the pressure is unknown and P_2 as the unknown pressure"	Revise the phrase "Using P1 and V1 as the known values 0.933 atm and 2.40 mL" to "Using P1 and V1 as the known values 13.0 psi and 15.0 mL" in the solution to Example 9.8 Volume of a Gas Sample, as follows: (c) From Boyle's law Using P1 and V1 as the known values 13.0 psi and 15.0 mL, P2 as the pressure at which the volume is unknown, and V2 as the unknown volume, we have	Туро
Chapter 8.2: Gases; Section 8.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Pressure: Boyle's Law In Figure 8.14, the graph of P vs. V is a parabola, but the graph of P vs. V should be a hyperbola.	Revise "parabola" to "hyperbola" in the figure caption for Figure 8.14 on the relationship between pressure and volume.	Туро
Chapter 8.2: Gases; Section 8.2: Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law; Subsection: Volume and Temperature: Charles's Law The phrase, "and as seen with the V-T relationship, this leads to another form of Charles's law," should be, "and as seen with the P-T relationship, this leads to another form of Charles's law."	Revise "V-T relationship" to "P-T relationship" in the paragraph before Example 8.6 Predicting Change in Volume with Temperature as follows: For a confined, constant pressure gas sample, V/T is constant (i.e., the ratio = k), and as seen with the P-T relationship, this leads to another form of Charles's law: V1/T1 = V2/T2.	Туро

Chapter 8.4: Gases Section: Effusion and Diffusion of Gases In the first equation, for the rate of diffusion, revise "rate of diffusio = " to "rate of diffusion = "	Fixed	Туро
Chapter 8.4: Gases Section: Effusion and Diffusion of Gases In the second equation, for the rate of effusion, revise "rate of effusio " to "rate of effusion "		Туро
Chapter 8.4: Gases; Section 8.4: Effusion and Diffusion of Gases The equation in Example 8.22 should read, "rate of effusion of unknown" over "rate of effusion of CO_2."	Revise "O2" to "CO2" in the equation in Example 8.22 as follows: rate of effusion of unknown/rate of effusion of CO2	Туро
Chapter 8.4: Gases; Section 8.4: Effusion and Diffusion of Gases The equation that appears before Figure 8.29 should read "rate of effusion of B" over "rate of effusion of A."	Revise the equation before Figure 8.29 so that "A" and "B" aren't cut off, as follows: rate of effusion of B/rate of effusion of A	Туро
Chapter 8.5: Gases, Section: The Kinetic-Molecular Theory, Subsection: Molecular Velocities and Kinetic Energy the appropriate form of the gas constant is 8.314 J/K (8.314 kg m2s–2K–1) is missing a "per mole" in the definition of R and should be instead: the appropriate form of the gas constant is 8.314 J/mol-K (8.314 kg m2s–2mol-1K–1)	Revise the last paragraph of subsection Molecular Velocities and Kinetic Energy as follows: "When used in this equation, the appropriate form of the gas constant is 8.314 J/mol x K (8.314 kg m^2s^-2mol^-1K^-1)."	Туро
Chapter 8.5: Gases; Section 8.5: The Kinetic-Molecular Theory; Subsection: The Kinetic-Molecular Theory Explains the Behavior of Gases, Part 1 Part of the	Revise "reduced" to "increased" in part (b) of the caption of the figure before subsection Molecular Velocities and Kinetic Energy, Figure 9.31, as follows: (b) When volume decreases, gas pressure increases due to increased frequency of molecular collisions.	Туро

caption for Figure 8.31		
currently reads, "(b) When		
volume decreases, gas		
pressure increases due to		
reduced frequency of		
molecular collisions."		
However, it should read, "(b)		
When volume decreases, gas		
pressure increases due to		
increased frequency of		
molecular collisions."		
Chapter 8.5: Gases; Section		
8.5: The Kinetic-Molecular		
Theory; Subsection: The		
Kinetic-Molecular Theory		
Explains the Behavior of		
Gases, Part 1 Part of the		
caption for Figure 8.31		
currently reads, "(c) When		
the amount of gas increases		
at a constant pressure,		
volume increases to yield a		
constant number of		
collisions per unit wall area."		
However, it should read, "(c)	Add the phrase "per unit time" to part (c) of the	
When the amount of gas	caption of the figure before subsection Molecular	
increases at a constant	Velocities and Kinetic Energy, Figure 9.31, as	
pressure, volume increases	follows: (c) When the amount of gas increases at	
to yield a constant number	a constant pressure, volume increases to yield a	
of collisions per unit wall	constant number of collisions per unit wall area	
area per unit time."	per unit time.	Туро
Chapter 8.5: Gases; Section	Revise the description of Charles's law as follows:	туро
8.5: The Kinetic-Molecular	•	
	Charles's law. If the temperature of a gas is increased These conditions will decrease the	
Theory; Subsection: The		
Kinetic-Molecular Theory	both the frequency of molecule-wall collisions and the number of collisions per unit area, the	
Explains the Behavior of	combined effects of which balance the effect of	
Gases, Part 1 The		
explanation of Charles's law	increased collision forces due to the greater	
says, "If the temperature of	kinetic energy at the higher temperature.	
a gas is increased, a constant	(Previous: Charles's law. If the temperature of a	
pressure can be maintained	gas is increased These conditions will decrease	
only if the volume occupied	the both the frequency of molecule-wall	
by the gas increases. This	collisions and the number of collisions per unit	
will result in greater average	area, the combined effects of which outweigh	
distances traveled by the	those of increased collision forces due to the	
molecules to reach the	greater kinetic energy at the higher temperature.	
container walls, as well as	The net result is a decrease in gas pressure.)	Туро

ta anno an air an 11 an 16 ann an 1	
increased wall surface area.	
These conditions will	
decrease both the frequency	
of molecule-wall collisions	
and the number of collisions	
per unit area, the combined	
effects of which outweigh	
those of increased collision	
forces due to the greater	
kinetic energy at the higher	
emperature. The net result	
s a decrease in gas	
pressure." This is a confused	
explanation with "constant	
pressure" and "decrease in	
gas pressure." Suggest	
something like: "If the	
emperature of a gas is	
ncreased, a constant	
pressure can be maintained	
only if the volume occupied	
by the gas increases. This	
vill result in greater average	
listances traveled by the	
nolecules to reach the	
ontainer walls, as well as	
ncreased wall surface area.	
These conditions will	
lecrease both the frequency	
of molecule-wall collisions	
and the number of collisions	
per unit area, the combined	
effects of which will balance	
hose of increased collision	
orces due to the greater	
kinetic energy at the higher	
temperature. The net result	
s a constant gas pressure."	
Chapter 8.5: Gases; Section	
3.5: The Kinetic-Molecular	
Theory; Subsection: The	
Kinetic-Molecular Theory	
Explains the Behavior of	
Gases, Part 1 The phrase,	
will decrease the both the	
requency," should read,	
will decrease both the	Fixed.
will decrease both the	rixeu.

frequency."		
Chapter 8.6: Gases; Section 8.6: Non-Ideal Gas Behavior; Summary In the summary for Section 8.6: Non-Ideal Gas Behavior, the phrase, "non-ideal behavior of gases under conditions," should read, "non-ideal behavior of gases under these conditions."	Add the missing word "these" in the last sentence of the summary for Section 8.6 Non-Ideal Gas Behavior as follows: The van der Waals equation is a modified version of the ideal gas law that can be used to account for the non-ideal behavior of gases under these conditions.	Туро
Chapter 9.3: Thermochemistry, Section: Enthalpy, Example 9.15 p. 261 e.g. 5.15 in the Alt Solution using the data from Appendix G. The oxygen in the third chemical reaction is not balanced. A 3 is needed as it's coeffienent (sp).	Revise the third equation given in the solution to Example 9.15 Using Hess's Law as follows: Solution: Supporting Why the General Equation Is Valid H2(g) + N2(g) + 3O2(g)> 2HNO3(aq)	Туро
Chapter 9.3: Thermochemistry, Section: Enthalpy, Example 9.15 Using Hess's Law Example 9.14 and 9.15 in OpenStax- see attached files	Revise the third equation in Example 9.15 Using Hess's Law, Solution: Supporting Why the General Equation is Valid, as follows: H2(g) + N2(g) + 3O2(g)> 2HNO3 (aq)	Туро
Chapter 10: Liquids and Solids, End of Chapter Exercises, 29 The last exercise question in chapter 10.2 asks "Water rises in a glass capillary tube to a height of 17 cm. What is the diameter of the capillary tube?". The solution is 9.5 x 10^-5 m. If my calculations are correct, that is the radius not the diameter length. Chapter 10: Liquids and	Revise the solution to exercise 29 as follows: 29. Water rises in a glass capillary tube to a height of 17 cm Solution 1.9 x 10^-4 m	
Solids; Answer Key; Question 19 Part of the answer to question 19 in chapter 10 reads, "H-bonding is the principle intermolecular force holding the DNA	Revise "DNA strands" to "protein strand" in the answer to question 19.	Minor

strands together," but it should read, "H-bonding is the principle intermolecular force holding the protein strand in this shape."		
Chapter 10: Liquids and Solids; Answer Key; Question 63 The solution to question 63 parts (a) and (d) in chapter 10 reference water, but it should be carbon.	Revise "water" to "carbon" in the phase diagram solutions to question 63.	Туро
Chapter 10: Liquids and Solids; End of Chapter Exercises; Question 63 Question 63 of chapter 10 states that carbon has, "three different solid phases," but the diagram only shows 2.	Revise "three" to "two" in question 63 as follows: 63. Elemental carbon has one gas phase, one liquid phase, and two different solid phases	Туро
Chapter 10.1: Liquids and Solids; Section 10.1: Answer Key; Question 7 Part of the answer to question 7 part (c) of chapter 10 reads, "Hydrogen bonds form whenever a hydrogen atom is bonded to one of the more electronegative atoms, such as a fluorine, oxygen, nitrogen, or chlorine atom," but it should read, "Hydrogen bonds form whenever a hydrogen atom is bonded to one of the more electronegative atoms, such as a fluorine, oxygen or nitrogen atom."	Remove "chlorine" from the answer to part (c) of question 7.	Туро
Chapter 10.3: Liquids and Solids; Section 10.3: Phase Transitions; Subsection: Melting and Freezing The phrase, "the reciprocal process of melting and freezing occur at equal rates," should read, "the reciprocal processes of	Revise "process" to "processes" in the second paragraph of subsection Melting and Freezing as follows: In a mixture of solid and liquid at equilibrium, the reciprocal processes of melting and freezing occur at equal rates,	Туро

melting and freezing occur		
at equal rates."		
Chapter 10.3: Liquids and		
Solids; Section 10.3: Phase		
Transitions; Subsection:		
Vaporization and		
Condensation; Example 10.5		
In the Check Your Learning		
to Example 10.5, the	Revise the table in the Check Your Learning of	
question uses a vapor	Example 10.5 Explaining Vapor Pressure in Terms	
pressure of 20 degrees, but	of IMFs to read "Vapor Pressure at 20 degrees C"	
the table says 25 degrees.	instead of "25 degrees C".	Туро
Chapter 10.5: Liquids and		/1
· · ·		
Solids; Section 10.5: The		
Solid State of Matter The		
learning objective, "Define		
and describe the bonding		
and properties of ionic and		
molecular, metallic and		
covalent network crystalline		
solids" should read, "Define		
and describe the bonding	Add commas to the first learning objective for	
and properties of ionic,	section The Solid State of Matter as follows:	
molecular, metallic and	Define and describe the bonding and properties	
covalent network crystalline	of ionic, molecular, metallic, and covalent	
solids."	network crystalline solids.	Туро
Chapter 10.6: Liquids and		
Solids, Section: Lattice		
Structures in Crystalline		
Solids, Figure 10.59 Figure		
10.59 shows an ionic crystal		
and the text explains that a		
CsCl crystal can be described		
as a simple unit cellbut		
there is a label in the figure		
that says 'Body-centered		
simple cubic structure'. This	Revise the label for Figure 10.59 to "Simple cubic	
is VERY confusing.	structure".	Туро
Chapter 10.6: Liquids and		
Solids; Section 10.6: Lattice		
Structures in Crystalline		
Solids; Subsection: Unit Cells		
of Ionic Compounds In		
Figures 10.59 and 10.60, are		
the diagrams for the	Revise Figure 10.60 to show Face-Centered Cubic	
structures of CsCl and NaCl	structure, not Body-Centered Cubic structure.	Type
ISTINCTION OF CONTRACT OF CONTRACT	ואו מכנמופ, חטו פטמץ-כפוונפופט כמטוכ או מכנמופ.	Туро

correct? The labels appear		
to be wrong.		
Chapter 11.1: Solutions and Colloids, Section: The Dissolution Process Instead of "As for the mixture of sugar and water" I think it would be better to say "As with the mixture of sugar and water" Chapter 11.1: Solutions and	Revise the first sentence of the third paragraph as follows: "As with the mixture of sugar and water, this mixture is also an aqueous solution."	Minor
Colloids; Section 11.1: The Dissolution Process In the second chemical equation in section 11.1, the Cr_2O_7 should have a charge of 2	Revise the second chemical equation in section 11.1 The Dissolution Process to have a charge of 2- for Cr2O7, as follows: K2Cr2O7(s)> 2K+(aq) plus Cr2O7 2-(aq)	Туро
Chapter 11.1: Solutions and Colloids; Section 11.1: The Dissolution Process The phrase, "When a small amount of solid potassium chromate is added to water, the compound dissolves and dissociates to yield potassium ions and dichromate ions," should read, "When a small amount of solid potassium dichromate is added to water, the compound dissolves and dissociates to yield potassium ions and dichromate ions"	Revise "potassium chromate" to "potassium dichromate" in the third paragraph of Section 11.1 The Dissolution Process as follows: When a small amount of solid potassium dichromate is added to water,	Туро
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Example 11.2 Example 11.2. The text takes 2000g of H2O, divides by the molar mass of H2O (18.02g) and arrives at 11.1 moles, when it should be 111 moles. This error propagates to the calculation of the mole fraction of H2O in the solution. By the way I love you guys for fighting the	Revise part (a) of the solution for Example 11.2 Calculating Mole Fraction and Molality as follows: Solution (a) The mole fraction mol H2O = 2000 g × (1 mol H2O/18.02 g H2O) = 111 mol H2O Xethylene glycol =[35.8 mol C2H4(OH)2]/[(35.8 + 111) mol total] = 0.245	Minor

shameless textbook cartel.		
Thank you thank you thank		
you!		
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Subsection: Colligative Properties of Electrolytes Page 640, First sentence. Should say "solution of NaCl contains 2.0 moles of ions"	Revise the first sentence after Example 11.11 as follows: "Assuming complete dissociation, a 1.0 m aqueous solution of NaCl contains 2.0 mole of ions (1.0 mol Na+ and 1.0 mol Cl-) per each kilogram of water"	Critical
Chapter 11.4: Solutions and Colloids, Section: Colligative Properties, Subsection: Phase Diagram for an Aqueous Solution of a Nonelectrolyte Page 633, line 5: ?Tb should be replaced with ?Tf.	In the last paragraph, revise "DeltaT_b" to "DeltaT_f".	Major
Chapter 11.5: Solutions and Colloids; Section 11.5: Colloids; Subsection: Preparation of Colloidal Systems In the chemical equation that follows table 11.4, the state of 3Cl^- should be (s).	Revise the first chemical equation in subsection Preparation of Colloidal Systems as follows: Fe3+(aq) + 3Cl-(aq) + 6H2 O(I)> Fe(OH)3(s) + H3 O+(aq) + 3Cl-(aq) Previous: Fe3+(s) + 3Cl-(g) + 6H2 O(I)> Fe(OH)3(aq) + H3 O+(aq) + 3Cl-(aq)	Туро
Chapter 14: Acid-Base Equilibria, Appendix H Appendix H – some Ka values do not match values used within Chapter 14. Ka for HCO3- should be 4.7 x 10^-11 instead of 5.6 x 10^- 11	Revise the Ka value given in Appendix H for HCO3- to 4.7 x 10 ^-11. Update examples in Ch. 14 to match.	
Chapter 14: Acid-Base Equilibria; Answer Key; Question 81 The answer to question 81 in chapter 14 does not make sense.	Revise the answer to question 81 as follows: 81. [H3O+] and [HCO3?] are practically equal	Minor
Chapter 14: Acid-Base Equilibria; End of Chapter Exercises; Question 33 The chemical equation that is the solution to question 33 in chapter 14 is not balanced.	Add a "2" in front of HCl in the equation for question 33 as follows: 33. Mg(OH)2(s) + 2HCl(aq) > Mg2+(aq) + 2Cl-(aq) + 2H2 O(I)	Туро

Chapter 14: Acid-Base Equilibria; End of Chapter Exercises; Question 37 In Chapter 14, question 37, "strongest acid" should be "stronger acid."	Revise "strongest" to "stronger" in question 37.	Critical
Chapter 14.1: Acid-Base Equilibria, Section: Brønsted- Lowry Acids and Bases In your passage about the development of acid-base theories Carl Axel Arrhenius is named as the person behind the Arrhenius model in 1884. Actually it was Svante Arrhenius. As online research shows, Carl Axel Arrhenius was an army officer, who died in 1824.	In the first paragraph, revise "Carl Axel	
Your sincerely, Gerd Berger	Arrhenius" to "Svante Arrhenius".	Туро
Chapter 14.1: Acid-Base Equilibria; Section 14.1: Bronsted-Lowry Acids and Bases The phrase, "adding ammonia to water yields hydroxide ions and ammonium ions" should be "adding a base to water yields hydroxide ions and a corresponding cation." Note that the example given does not match the text description.	Revise the text as follows: "Adding pyridine to water yields hydroxide ions and pyridinium ions." (Previous: Adding ammonia to water yields hydroxide ions and ammonium ions.)	Critical
Chapter 14.1: Acid-Base Equilibria; Section 14.1: Bronsted-Lowry Acids and Bases; Example 14.1 In Example 14.1, remove the + sign after the superscript 2. (There are two instances of this.)	Remove the + sign after the superscript 2 in the first equation in Example 14.1 Ion Concentrations in Pure Water as follows: Kw = [H3O+][OH-] = [H3O+]2 = [OH-]2 = 1.0 x 10-14	Major
Chapter 14.1: Acid-Base Equilibria; Section 14.1: Bronsted-Lowry Acids and Bases; Summary The last equation in the summary of	Revise the last equation n the summary of section 14.1 from "H2O" to "H3O" as follows: Kw = [H3O+][OH?] = 1.0 × 10^-14 at 25 degrees C	Туро

		1
section 14.1 has a typo. H_2O should be H_3O.		
Chapter 14.3: Acid-Base Equilibria, Section: Relative Strengths of Acids and Bases p802 - Reaction missing a species and ICE table has the columns placed incorrectly	Revise Example 14.11 Determination of Ka or Kb from pH as follows: Delete the first ICE table in the Solution. Revise Example 14.12 Equilibrium Concentrations in a Solution of a Weak Acid as follows: Correct the alignment of the columns in the first ICE table in the Solution.	Major
Chapter 14.3: Acid-Base Equilibria, Section: Relative Strengths of Acids and Bases, Subsection: Effect of Molecular Structure on Acid- Base Strength Figure 14.13 – The group numbers in the figure do not match the group numbers in the preceding text. One method of numbering groups in the periodic table should be used throughout the entire textbook.	In the first paragraph, revise "group 7A" to "group 17" and "group 6A" to "group 16".	Туро
Chapter 14.3: Acid-Base Equilibria; Section 14.3: Relative Strengths of Acids and Bases In the phrase, "by measuring their equilibrium constants," equilibrium is misspelled.	Correct the spelling of "equlibrium" to "equilibrium".	Туро
Chapter 14.3: Acid-Base Equilibria; Section 14.3: Relative Strengths of Acids and Bases; Subsection: The Ionization of Weak Acids and Weak Bases In the caption to Figure 14.9, the phrase, "is has a pH of 3," should be, "has a pH of 3."		Туро
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Section: Salts of Weak Acids and Strong Bases The second sentence of the second paragraph states "The sodium ion, as the conjugate	the conjugate base of acetic acid, reacts with water and increases the concentration of	Туро

acid of a strong base, has not effect on the acidity of the solution." Na+ is not the conjugate acid of NaOH. Water is the conjugate acid of NaOH, and Na+ is simply a spectator ion that does not form an acidic hydrated species like other metal cations.		
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base Revise the answer to letter (c) of Check Your Learning in Example 14.17 to "acidic."	Revise the answer to part(c) of Example 14.17 "Determining the Acidic or Basic Nature of Salts" Check Your Learning to "acidic."	Туро
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base There is an error in the reasoning and calculation used to determine an answer to Example 14.17 (d) on p. 814. (d) The Na+ ion is a spectator, while the HPO42- ion is amphiprotic, with a Ka of 4.2 x 10^-13. The Kb of HPO42- can be determined from the Ka of its conjugate acid, H2PO4-: Kb = (1.0 x $10^{-14}) / (6.2 x 10^{-8}) = 1.6$ x 10^{-7} . Since Kb > Ka, the aqueous solution will be basic.	Revise the solution to Example 14.17 "Determining the Acidic or Basic Nature of Salts" as follows: (d) The Na+ cation is a spectator, and will not affect the pH of the solution, while the HPO4^2- anion is amphiprotic. The Ka of HPO4^2- is 4.2 × 10^-13, and its Kb is (1.0 × 10^- 14)/(6.2 × 10^-8) = 1.6 × 10^-7.	Major
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base There is an error in the reasoning	Revise the solution to Example 14.17 "Determining the Acidic or Basic Nature of Salts" as follows: (b) The Na+ cation is a spectator, and will not affect the pH of the solution; while the HCO3- anion is amphiprotic. The Ka of HCO3- is 4.7×10^{-11} , and its Kb is $(1.0 \times 10^{-14})/(4.3 \times 10^{-7}) = 2.3 \times 10^{-8}$.	Туро

		1
and calculation used to determine the answer to Example 14.17 (b) on p. 814. (b) The Na+ cation is a spectator; and will not affect the pH of the solution; while the HCO3– anion is amphiprotic, it could either behave as an acid or a base. The Ka of HCO3– is 4.7 x 10^-11; the Kb of HCO3– can be determined from the Ka of its conjugate acid, H2CO3: Kb = (1.0 x 10^-14) / (4.3 x 10^-7) = 2.3 x 10^-8. Since Kb > Ka, the aqueous solution will be basic.		
Chapter 14.4: Acid-Base		
Equilibria; Section 14.4:		
Hydrolysis of Salt Solutions;		
Subsection: The Ionization of		
Hydrated Metal Ions The		
sentence, "Note that some		
of these aluminum species		
are exhibiting amphiprotic		
behavior, since they are		
acting as acids when they		
appear on the right side of		
the equilibrium expressions		
and as bases when they appear on the left side,"		
should read, "Note that		
some of these aluminum		
species are exhibiting	Switch "right" and "left" in the fourth paragraph	
amphiprotic behavior, since	of Subsection The Ionization of Hydrated Metal	
they are acting as acids	Ions as follows: Note that some of these	
when they appear on the	aluminum species are exhibiting amphiprotic	
left side of the equilibrium	behavior, since they are acting as acids when	
expressions and as bases	they appear on the left side of the equilibrium	
when they appear on the	expressions and as bases when they appear on	
right side."	the right side.	Туро
Chapter 14.5: Acid-Base		
Equilibria, Section:		
Polyprotic Acids p823 - ICE	In Example 14.19 Ionization of a Diprotic Acid,	
table columns not aligned. submitted via ZenDesk	revise the alignment of the columns in the first ICE table.	Туро
Chapter 14.6: Acid-Base	Revise the answer to exercise 107 as follows:	Minor

Equilibria, Section: Buffers, End of Chapter Exercises The answer for Chapter 14 problem 107 in the back of the book is incomplete. It does not give an answer for the [saccharin] ([HA]). Assuming the question is considering that the 'buffered' solution does not change pH, then the Henderson-Hasselbach equation gives an answer: [HA] = 6.1x10^-9	107. Saccharin, C7H4NSO3H, is a weak acid (Ka = 2.1 x 10^-2) Answer: The molar mass of sodium saccharide is 205.169 g/mol. Using the abbreviations HA for saccharin and NaA for sodium saccharide the number of moles of NaA in the solution is: 9.75 x 10^-6 mol The pKa for [HA] is 1.68, so [HA] = 6.2 x 19^-9 M. Thus, [A-] (saccharin ions) is 3.90 x 10^-5 M.	
Chapter 14.7: Acid-Base Equilibria, Section: Acid-Base Titrations, End of Chapter Exercises Problem #112 of Chapter 14 (pg.828) does not state a proper question. Should it read something like: "WHY can we ignore?"	Revise exercise 112 as follows: "Why can we ignore the contribution of water to the concentration of OH- in a solution of the following bases"	Major
Chapter 14.7: Acid-Base Equilibria; Section 14.7: Acid-Base Titrations; Subsection: Titration Curve The caption for Figure 14.21 reads, "(a) The titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH." However, it should read, "(a) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong	Reivse "CH3COOH (weak acid)" to "HCI (strong	
base) has an equivalence point of 7.00 pH. (b) The	acid)" in part (a) of the caption for Figure 12.21 titration curves.	Туро

titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH."		
Chapter 14.3: Acid-Base Equilibria; Section 14.3: Relative Strengths of Acids and Bases; Subsection: The Ionization of Weak Acids and Weak Bases In the caption to Figure 14.9, the phrase, "is has a pH of 3," should be, "has a pH of 3."	Delete the word "is" in the caption for Figure 14.9 pH paper as follows:solution of CH3CO2H (beaker on right) has a pH of 3	Туро
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Section: Salts of Weak Acids and Strong Bases The second sentence of the second paragraph states "The sodium ion, as the conjugate acid of a strong base, has not effect on the acidity of the solution." Na+ is not the conjugate acid of NaOH. Water is the conjugate acid of NaOH, and Na+ is simply a spectator ion that does not form an acidic hydrated species like other metal cations.	Revise the second paragraph as follows: "A solution of this salt contains sodium ions and	Critical
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base Revise the answer to letter (c) of Check Your Learning in Example 14.17 to "acidic."	Revise the answer to part(c) of Example 14.17 "Determining the Acidic or Basic Nature of Salts" Check Your Learning to "acidic."	Major
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions,	Revise the solution to Example 14.17 "Determining the Acidic or Basic Nature of Salts" as follows: (d) The Na+ cation is a spectator, and	Major

Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base There is an error in the reasoning and calculation used to determine an answer to Example 14.17 (d) on p. 814. (d) The Na+ ion is a spectator, while the HPO42- ion is amphiprotic, with a Ka of 4.2 x 10^-13. The Kb of HPO42- can be determined from the Ka of its conjugate acid, H2PO4-: Kb = $(1.0 \times 10^{-14}) / (6.2 \times 10^{-8}) = 1.6 \times 10^{-7}$. Since Kb > Ka, the aqueous solution will be basic.	will not affect the pH of the solution, while the HPO4^2- anion is amphiprotic. The Ka of HPO4^2- is 4.2 × 10^-13, and its Kb is (1.0 × 10^- 14)/(6.2 × 10^-8) = 1.6 × 10^-7.	
Chapter 14.4: Acid-Base Equilibria, Section: Hydrolysis of Salt Solutions, Subsection: Equilibrium in a Solution of a Salt of a Weak Acid and a Weak Base There is an error in the reasoning and calculation used to determine the answer to Example 14.17 (b) on p. 814. (b) The Na+ cation is a spectator; and will not affect the pH of the solution; while the HCO3– anion is amphiprotic, it could either behave as an acid or a base. The Ka of HCO3– is 4.7 x 10^{-11} ; the Kb of HCO3– can be determined from the Ka of its conjugate acid, H2CO3: Kb = $(1.0 \times 10^{-14}) / (4.3 \times 10^{-7}) = 2.3 \times 10^{-8}$. Since Kb > Ka, the aqueous solution will be basic.	Revise the solution to Example 14.17 "Determining the Acidic or Basic Nature of Salts" as follows: (b) The Na+ cation is a spectator, and will not affect the pH of the solution; while the HCO3- anion is amphiprotic. The Ka of HCO3- is 4.7×10^{-11} , and its Kb is $(1.0 \times 10^{-14})/(4.3 \times 10^{-7}) = 2.3 \times 10^{-8}$.	Major
Chapter 14.4: Acid-Base Equilibria; Section 14.4: Hydrolysis of Salt Solutions; Subsection: The Ionization of Hydrated Metal Ions The	Switch "right" and "left" in the fourth paragraph of Subsection The Ionization of Hydrated Metal Ions as follows: Note that some of these aluminum species are exhibiting amphiprotic behavior, since they are acting as acids when	Туро

sentence, "Note that some of these aluminum species are exhibiting amphiprotic behavior, since they are acting as acids when they appear on the right side of the equilibrium expressions and as bases when they appear on the left side," should read, "Note that some of these aluminum species are exhibiting amphiprotic behavior, since they are acting as acids when they appear on the left side of the equilibrium expressions and as bases when they appear on the right side."	they appear on the left side of the equilibrium expressions and as bases when they appear on the right side.	
Chapter 14.5: Acid-Base		
Equilibria, Section: Polyprotic Acids p823 - ICE table columns not aligned. submitted via ZenDesk	In Example 14.19 Ionization of a Diprotic Acid, revise the alignment of the columns in the first ICE table.	Minor
Chapter 14.6: Acid-Base Equilibria, Section: Buffers, End of Chapter Exercises The answer for Chapter 14 problem 107 in the back of the book is incomplete. It does not give an answer for the [saccharin] ([HA]). Assuming the question is considering that the 'buffered' solution does not change pH, then the Henderson-Hasselbach equation gives an answer: [HA] = 6.1x10^-9	Revise the answer to exercise 107 as follows: 107. Saccharin, C7H4NSO3H, is a weak acid (Ka = 2.1 x 10^-2) Answer: The molar mass of sodium saccharide is 205.169 g/mol. Using the abbreviations HA for saccharin and NaA for sodium saccharide the number of moles of NaA in the solution is: 9.75 x 10^-6 mol The pKa for [HA] is 1.68, so [HA] = 6.2 x 19^-9 M. Thus, [A-] (saccharin ions) is 3.90 x 10^-5 M.	Minor
Chapter 14.7: Acid-Base Equilibria, Section: Acid-Base Titrations, End of Chapter Exercises Problem #112 of Chapter 14 (pg.828) does not state a proper question. Should it read something like: "WHY can we	Revise exercise 112 as follows: "Why can we ignore the contribution of water to the concentration of OH- in a solution of the following bases"	Minor

ignore?"		
Chapter 14.7: Acid-Base Equilibria; Section 14.7: Acid-Base Titrations; Subsection: Titration Curve The caption for Figure 14.21 reads, "(a) The titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH." However, it should read, "(a) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M CH_3COOH (weak acid) with 0.100 M NaOH (strong base) has an	Reivse "CH3COOH (weak acid)" to "HCl (strong	
equivalence point of 8.72 pH."	acid)" in part (a) of the caption for Figure 12.21 titration curves.	Туро
Chapter 15: Equilibria of Other Reaction Classes, Section: Precipitation and Dissolution In solving for the formation of a solid, two Ksp values are given and two Molar concentrations. In the first calculation to find the concentration of Silver, the wrong Ksp values and concentration are plugged in for Agl, but the correct answer is still given as if the right numbers had been plugged in.	Revise the solution to Example 15.11 "Precipitation of Silver Halides" as follows: Solution For AgI: AgI precipitates when Q equals Ksp for AgI (1.5 × 10^-16). When [I-] = 0.0010 M: Q = [Ag+][I-] = [Ag+](0.0010) = 1.5 × 10^-16 [Ag+] = (1.5 × 10^-16)/(0.0010) = 1.5 × 10^-15 M	Major

] = 0.01442 M so: Ksp = (0.01442 M)(0.01442 M) =	question in Example 15.5 Determination of Ksp from Gram Solubility as follows: Answer 2.08 ×	
g/mol) = 0.01442 mol TICI dissolves in 1 L, so there will be the following concentrations: [TI^+] = [CI^-	Revise the solution to the Check Your Learning	
equilibrium: TICI (s)> TI^+ (aq) + CI^- (aq) we have Ksp = [TI^+][CI^-] Given 3.46 g TICI dissolves in 1 L, it follows that: 3.46g/(239.93		
Ksp and Solubility Both the numerical answer and the number of significant figures are incorrect. For the		
Chapter 15: Equilibria of Other Reaction Classes; Section 15.1: Precipitation and Dissolution; subsection:		
Dissolution, Example 15.5 Revise answer for Check Your Learning exercsise 15.5 to be: 2.08 x 10^-4. Location:		
Chapter 15.1: Equilibria of Other Reaction Classes, Section: Precipitation and		
Chapter 15.1: Equilibria of Other Reaction Classes, Section: Precipitation and Dissolution, Example 15.12 The answer to the check your learning question in example 15.12 should be 4 x 10^-11.	Revise the answer to Check Your Learning in Example 15.12 Common Ion Effect as follows: Check Your Learning Calculate the molar solubility of aluminum hydroxide Answer: 4 x 10^-11	Major
Chapter 15.1: Equilibria of Other Reaction Classes, Section: Precipitation and Dissolution, Example 15.10 Example Problem 15.10 (pg 841 PDF) has a typo in the Ksp value for Mn(OH)2. The value should be 2x10^-13 (per Appendix J).	Revise the Ksp value in the soultion of Example 15.10 Concentrations Following Precipitation as follows: "Ksp = 2 x 10^-13"	Minor

Bases, Table 15.2 Table 15.2. The title of the table should be " Formation Constant" NOT "Formulation Constants"		
concentration of Cd2+ would be 2.3x10^-6 M. The book	Revise exercise 103 as follows: 103. Calculate the concentration of Cd2+ resulting from the dissolution of CdCO3 in a solution that is 0.250 M in CH3CO2H, 0.375 M in NaCH3CO2, and 0.010 M in H2CO3.	Minor
Chapter 15.3: Equilibria of Other Reaction Classes, Section: Multiple Equilibria, End of Chapter Exercises Problem #107 of the Chapter 15.3 problem set has an incorrect answer in the back of the book. Using values from the Appendices of: Mg(OH)2 Ksp = 8.9x10^-12 HCN Ka = 4.9x10^-10 The answer should be 0.047g NaCN. The book lists the answer as 5.4x10^-3 g.	Revise the answer to exercise 107 to 0.0036 g.	Minor
Chapter 16: Electrochemistry, Answer Key, Question 7 Q7 and answers do not correspond	Remove parts (a) of the answer to question 7, and re-letter the remaining answers to (a), (b), and (c).	Туро
Chapter 16: Electrochemistry, End of Chapter Exercises, 24 Ch. 16 #24(b): The reaction is not balanced. Should be 3Cu2+(aq) + 2Al(s) ? 2Al3+(aq) + 3Cu(s)	Revise part b of exercise 24 as follows: (b) 3Cu2+(aq) + 2Al(s)> 2Al3+(aq) + 3Cu(s)	Minor

Chapter 16: Electrochemistry, End of Chapter Exercises, 28 Ch. 16 problem#28. Br- and Br2 are in the same phase, so they should be separated by a comma, not a single vertical line.	In exercise 28, replace the line between Br2 (aq) and br-(aq) with a comma.	Major
Chapter 16: Electrochemistry, End of Chapter Exercises, 31 Ch. 16 #31(c) I believe should say "bromide is oxidized to bromine"	Revise part c of exercise 31 as follows: 31. Determine the standard cell potential and the cell potential under the stated conditions (c) The cell made of a half-cell in which 1.0 M aqueous bromide is oxidized to 0.11 M bromine ion and a half-cell in which aluminum ion at 0.023 M is reduced to aluminum metal.	Major
Chapter 16: Electrochemistry; Answer Key; Question 13 In the solution to question 13 in Chapter 16, the charge on Ni should be 2+.	Revise "Ni+" to Ni2+" in the solution to question 13 part (a).	Туро
Chapter 16.3: Electrochemistry, Section: Standard Reduction Potentials, Table 16.2 Standard reduction potential values in Appendix L, disagree with some of the values in Table 16.2.	Revise the following values in Table 17.2: Cu2+(aq) + 2e> Cu(s) +0.34 AgCl(s) + e> Ag(s) + Cl-(aq) +0.22233 Pb2+(aq) + 2e> Pb(s) - 0.1262 Sn2+(aq) + 2e> Sn(s) -0.1375	Туро
Chapter 16.4: Electrochemistry, Section: The Nernst Equation When defining the Faraday constant on this page "F = " The constant goes from 9.648 x 10^4 to 9.684 x 10^4. I believe the number should remain the same.	In the equation for Faraday's constant, revise "9.684" to "9.648".	Minor
Chapter 16.4: Electrochemistry, Section: The Nernst Equation, Example 16.5 In Example 16.5. The sentence "The two equilibrium constants differ slightly due to rounding in the constants 0.0257 V and	In Example 16.5 Equilibrium Constants, Standard Cell Potentials, and Standard Free Energy Changes, delete the following sentence: "The two equilibrium constants differ slightly due to rounding in the constants 0.0257 V and 0.0592 V."	Minor

0.0592 V." I find to be confusing, since in this		
example the equilibrium		
constant was only calculated		
with the 0.0592 V constant. I		
think it would be best to		
remove this sentence or		
modify it.		
Chapter 16.5:		
Electrochemistry, Section:		
Batteries and Fuel Cells,		
Subsection: Secondary		
Batteries The chemical		
reaction equations for		
lithium ion batteries in		
chapter 16 are not balanced	In the discussion of Lithium ion betteries and	
correctly (one Li on the left,	In the discussion of Lithium ion batteries, revise the subscript "x - 1" to "1 - x" in the reactions	
and 2x-1 on the right). The x- 1 subscript should be 1-x.	given.	Туро
		Туро
Chapter 16.5:		
Electrochemistry; Section 16.5: Batteries and Fuel		
Cells; Subsection: Primary		
Batteries In Figure 16.10, the		
top of the dry cell should be	Revise the charge given at the top of the dry cell	
positive.	in Figure 16.10 to be positive.	Туро
Chapter 16.6:		
Electrochemistry, Section:		
Corrosion, Figure 16.18		
Reporting several errors in		
the last figure in the		
"Corrosion" section of		
chapter 16. Details provided		
below, and a sample image		
illustrating the		
recommended revisions is		
attached. 1. The figure has		
arrows suggesting current flow through a "lead wire"		
connecting the protected		
item to the sacrificial anode.		
Readers will / should assume		
those arrows indicate flow		
of electrons, in which case		
they're pointing in the	Replace Figure 16.18 with an updated version	
wrong direction (should be	that shows the electrons flowing from the	
from sacrificial anode to	sacrificial anode to the object to be protected.	Major

protected item). Best	
remedy would be swap the	
locations of the protected	
item and the anode, that	
way the conventional	
depiction of an	
electrochemical cell, with	
anode on left and cathode	
on right, electrons flowing	
left-to-right, is honored. 2.	
The arrows in the soil give	
the incorrect impression	
that electrons are flowing	
through the soil these	
arrows should be removed,	
and perhaps replaced with	
more accurate depictions of	
the ion flow occuring within	
the soil. 3. Would be helpful	
to include typical half-	
reactions at each of the two	
objects, e.g., reduction of	
oxygen at the protected	
item and oxidation of anode	
material at the anode. 4. It's	
not clear if the wire	
connecting the two objects	
is labeled to indicate its	
function ("lead" as	
pronounced "leed") or its	
composition (the element	
Pb). If the former, better to	
replace "lead" with	
"connecting", or just omit	
the label altogether. If the	
latter, should replace "lead"	
with "Pb", though I'd argue	
against this non-useful detail	
being included at all. 5.	
Finally, the label "no power	
source is needed" should be	
removed. This is a true	
statement for "passive"	
cathodic protection, but not	
for "active" cathodic	
protection. Unless details	
are added to the text	

narrative to clarify these two different approaches, it's best not to give the false impression that cathodic protection never requires an external power source.		
Chapter 16.6: Electrochemistry; Section 16.6: Corrosion. In the equation, "cathode: O_2(s) + 2H^+(aq) + 4e^- yields 2H_2O(I)," the 2H^+ should be 4H^+.	Revise "2H+ (aq)" to "4H+ (aq)" in the equation after "The electrons reduce oxygen in the air in acidic solutions."	Туро
Chapter 18: Representative Metals, Metalloids, and Nonmetals; End of Chapter Exercises; Question 3 In the answer to question 3 in chapter 18, change SeSe to SrSe.	Change "SeSe" to "SrSe" in the answer to question 3.	Туро
Chapter 18: Representative Metals, Metalloids, and Nonmetals; Key Terms In the key terms list of chapter 18, change, "metal atoms of the metallic elements of groups 1, 2, 12, 13, 14, 15 and 16, which form ionic compounds by losing electrons from their outer s or p orbitals," to, "metal (representative) metallic elements of groups 1, 2, 12, 13, 14, 15 and 16, which form ionic compounds by losing electrons from their outer s or p orbitals."	Revise the key term metal from "metal" to "metal (representative)".	Туро
Chapter 18.1: Representative Metals, Metalloids, and Nonmetals; Section 18.1: Periodicity; Subsection: Group 12 In the caption to Figure 18.7, the phrase, "Zinc is an active transition metal," should say, "Zinc is an active metal"	Revise "Zinc is an active transition metal" to "Zinc is an active metal" in the caption to Figure 18.7.	Туро

Chapter 18.2: Representative Metals, Metalloids, and Nonmetals; Section 18.2: Occurrence and Preparation of the Representative Metals; Subsection: The Preparation of Zinc Under the subsection, "The Preparation of Zinc," Co_2 should be CO_2.	Revise "Co2" to "CO2" in subsection The Preparation of Zinc.	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals, Section: Structure and General Properties of the Nonmetals oxidation states missing from some equations	Properly align oxidation numbers below equations.	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals The phrase, "There are four general aspects of the oxidation- reduction chemistry," should read, "There are five general aspects of the oxidation- reduction chemistry"	Revise "four" to "five" in the phrase "There are five general aspects of the oxidation-reduction chemistry"	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the Nonmetals; Subsection: Phosphorus The phrase, "shown in Figure 18.24 and Figure 18.24," should read, "shown in Figure 18.24."	Revise the phrase "shown in Figure 18.24 and Figure 18.24," to "shown in Figure 18.24."	Туро
Chapter 18.4: Representative Metals, Metalloids, and Nonmetals; Section 18.4: Structure and General Properties of the	Revise the phrase "members of group 15 have five valence elements," to "members of group 15 have five valence electrons" in subsection Sulfur.	Туро

Nonmotole: Cubes		
Nonmetals; Subsection:		
Sulfur The phrase, "For		
example, members of group		
15 have five valence		
elements," should read, "For		
example, members of group		
15 have five valence		
electrons"		
Chapter 18.4:		
Representative Metals,		
Metalloids, and Nonmetals;		
Section 18.4: Structure and		
General Properties of the		
Nonmetals; Subsection:		
Sulfur The phrase, "so		
named because of the shape		
or its crystals," should read,		
"so named because of the	Revise "or its crystals" to "of its crystals" in	
shape of its crystals"	subsection Sulfur.	Туро
Chapter 19: Transition		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Metals and Coordination		
Chemistry; Answer Key;		
Question 19 In the answer to		
question 19 part (c) in		
chapter 19, HrCO should be	Revise "HrCO" to "HCrO" in the answer to	-
HCrO.	question 19 part (c).	Туро
Chapter 19.1: Transition		
Metals and Coordination		
Chemistry; Section 19.1:		
Occurrence, Preparation,		
and Properties of Transition		
Metals and Their		
Compounds The answer to		
question 17 part (b) in		
chapter 19 is missing a	Add the missing reaction arrow to question 17	
reaction arrow.	part (b).	Туро
Chapter 19.1: Transition		
Metals and Coordination		
Chemistry; Section 19.1:		
Occurrence, Preparation,		
and Properties of Transition		
Metals and Their		
Compounds; Question 21		
The answer to question 21	Revise the answer to question 21 part (c) as	
part (c) in chapter 19 does	follows: (c) MnO4- + 5Fe2+ + 8H+> Mn2+ +	
not correspond with the	5Fe3+ + 4H2O	Туро
		1900

question.		
Chapter 19.2: Transition		
Metals and Coordination		
Chemistry, Section:		
Coordination Chemistry of		
Transition Metals Hi, I came		
across this in chapter 19		
section 2 of the OpenStax		
Chemistry title:		
http://cnx.org/contents/hav		
xkyvS@9.311:V5zcdoUo@6/		
Coordination-Chemistry-of-		
Tran Students are told "The		
four common exceptions are		
aqua (H2O), amine (NH3),"		
but at least since 1971 under		
the IUPAC Red Book		
recommendations NH3 has		
been referred to as		
"ammine" so as to not		
confuse it with the		
functional group "amine"		
used in organic chemistry. I		
suspect this to be a		
typographical error. Please		
correct this so that students		
keep these concepts		
correctly in mind as they		
transfer between classes or	Update the spelling of NH3 "amine" to "ammine"	
schools.	throughout.	Туро
Chapter 20.4: Nuclear		/1
Chemistry, Section:		
Transmutation and Nuclear		
Energy, Table 20.3 In Table		
20.3. Californium row has an	In Table 20.3 Preparation of Some of the	
error. The reaction shown is	Transuranium Elements, revise the row for	
for the preparation of Bk not		
Cf.	242/96 Cm + 4/2 He> 245/98 Cf + 1/0 n	Major
Chapter 20.6: Nuclear	, ,,,,	. . .
Chemistry, Section:		
Biological Effects of		
Radiation, Subsection:		
Ionizing and Nonionizing		
Radiation The discussion of		
how radiation can damage		
biomolecules (chapter 20.6)	Revise OH- to OH(dot) in figure 21.32 and the	
shows ionized water (H2O	figure above it.	Туро
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

cation) reacting with H2O to form hydronium cation plus hydroxyl ANION. This is obviously wrong. The text is correct in describing hydroxyl RADICAL as the bad actor, but the equation on p1219 and figure 20.32 have the typo. I.e. OH- should be OH• It's a typo, but it's totally egregious (chemically) and really needs to be fixed.		
Chapter 21: Organic Chemistry; key terms Add "addition reaction" to the list of key terms for chapter 21. I suggest the definition, "reaction in which a double carbon-carbon bond forms a single carbon-carbon bond by the addition of a reactant. Typical reaction for an alkene."	Add the key term addition reaction to Chapter 21.	Туро
Chapter 21.1: Organic Chemistry; Section 21.1: Hydrocarbons; Subsection: The Basics of Organic Nomenclature: Naming Alkanes; Example 21.5 The answer to the Check Your Learning for Example 20.5 reads, "reactant: trans-3- hexene, product: 3,4- dichlorohexane" should be, "reactant: 3-hexene (could be cis or trans) product: 3,4- dichlorohexane."	Revise the answer to the Check Your Learning in Example 21.5 Alkene Reactivity and Naming to "reactant: cis-3-hexene product: 3,4- dichlorohexane".	Туро
Chapter 21.3: Organic Chemistry; Section 21.3: Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones The third image under the subsection, "Aldehydes and Ketones," has an extraneous image at	Delete the misplaced structural formula in subsection Aldehydes and Ketones.	Туро

the top.		
Chapter 21.3: Organic Chemistry; Section 21.3: Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones; Example 21.10 In the Check Your Learning to Example 21.10, the phrase, "reduced relative to the marked carbon atom in ethanol," should be, "reduced relative to the carbon atom in CH_2 in ethanol."	Revise the first figure in the Check Your Learning in Example 21.10 Oxidation and Reduction in Organic Chemistry so that the "C" is marked red.	Туро
Chapter 21.3: Organic Chemistry; Section 21.3: Aldehydes, Ketones, Carboxylic Acids, and Esters; Subsection: Aldehydes and Ketones; Question 47 The answer to question 47 part (b) in chapter 21c does not make sense.	Revise the answer to question 47 part (b) as follows: (b) CH3COCH3	Туро
Chapter 21.4: Organic Chemistry; Section 21.1: Hydrocarbons; Subsection: The Basics of Organic Nomenclature: Naming Alkanes; Example 21.4 The phrase, "(as shown by the red numbers) so the branch is connected to carbon 3," should read, "(as shown by the blue numbers) so the branch is connected to carbon 3"	Reverse the use of "red" and "blue" in the solution to Example Example 21.4 Naming Substituted Alkanes.	Туро
Appendix B: Essential Mathematics; Section: Exponential Arithmetic In Appendix B, the sentence, "For example, 1,230,000,000 = 1.23 × 10^9 and 0.0000000036 × 10^?10." should read, "For example, 1,230,000,000 = 1.23 × 10^9	In Appendix B, revise the sentence, "For example, 1,230,000,000 = 1.23 × 10^9 and 0.00000000036 × 10^?10." to "For example, 1,230,000,000 = 1.23 × 10^9 and 0.0000000036 = 3.6 × 10^?10."	Туро

and 0.0000000036 = 3.6 × 10^?10."		
Appendix B: Essential Mathematics; Section: Exponential Arithmetic; Subsection: Addition of Exponentials; Example B1 The solution to Example B1 should be, "3.00 × 10^?3 = 300 × 10^?5."	Revise the solution to Example B1 Adding Exponentials from 3.00 x 100^-3 to 3.00 x 10^-3.	Туро
Appendix H: Ionization Constants Of Weak Acids The Lewis structure for formic acid in Appendix H is missing a double bond between the C and the terminal O.	Revise the Lewis structure for formic acid to have a double bond between Carbon and Oxygen.	Minor